We propose to develop, characterize and operate a superconducting undulator (SCU) afterburner consisting of 5 undulator modules (1 module = 2 SCU coils of 2 m length and 1 phase shifter) plus a pre-series prototype at the SASE2 hard X-ray beamline of European XFEL. This afterburner will produce an output in the order of 1010 ph/pulse at photon energies above 30 keV. The project is divided into the production of a pre-series prototype module and a small-series production of 5 modules. Central goals of this R&D activity are: the demonstration of the functionality of SCUs at an X-ray FEL, the set up of the needed infrastructure to characterize and operate SCUs, the industrialization of such undulators, and the reduction of the price per module. In this contribution, the main parameters and specifications of the pre-series prototype module are described.
Superconducting Undulators (SCUs) can produce higher photon flux and cover a wider photon energy range compared to permanent magnet undulators (PMUs) with the same vacuum gap and period length.
To build the know-how to implement superconducting undulators for future upgrades of the European XFEL facility, the test stand SUNDAE1 for the characterization of SCU is being developed. The purpose of SUNDAE1 is the training, tuning and development of new SCU coils by means of precise magnetic field measurements.
The experimental setup will allow the characterization of magnets up to 2m in length. These magnets will be immersed in a Helium bath at 4K or 2K temperature.
In this article, we describe the experimental setup and highlight its expected performances.
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.