Cold agglutinin disease is a difficult-to-treat autoimmune hemolytic anemia in which immunoglobulin M antibodies bind to erythrocytes and fix complement, resulting in predominantly extravascular hemolysis. This trial tested the hypothesis that the anti-C1s antibody sutimlimab would ameliorate hemolytic anemia. Ten patients with cold agglutinin disease participated in the phase 1b component of a first-in-human trial. Patients received a test dose of 10-mg/kg sutimlimab followed by a full dose of 60 mg/kg 1 to 4 days later and 3 additional weekly doses of 60 mg/kg. All infusions were well tolerated without premedication. No drug-related serious adverse events were observed. Seven of 10 patients with cold agglutinin disease responded with a hemoglobin increase >2 g/dL. Sutimlimab rapidly increased hemoglobin levels by a median of 1.6 g/dL within the first week, and by a median of 3.9 g/dL (interquartile range, 1.3-4.5 g/dL; 95% confidence interval, 2.1-4.5) within 6 weeks (P = .005). Sutimlimab rapidly abrogated extravascular hemolysis, normalizing bilirubin levels within 24 hours in most patients and normalizing haptoglobin levels in 4 patients within 1 week. Hemolytic anemia recurred when drug levels were cleared from the circulation 3 to 4 weeks after the last dose of sutimlimab. Reexposure to sutimlimab in a named patient program recapitulated the control of hemolytic anemia. All 6 previously transfused patients became transfusion-free during treatment. Sutimlimab was safe, well tolerated, and rapidly stopped C1s complement–mediated hemolysis in patients with cold agglutinin disease, significantly increasing hemoglobin levels and precluding the need for transfusions. This trial was registered at www.clinicaltrials.gov as #NCT02502903.
Intravenous infusions of different iron formulations are recognized as a cause of hypophosphatemia. Chronic hypophosphatemia can alter bone metabolism and bone material structure. As a consequence, osteomalacia may develop and lead to bone fragility. Herein, we report a patient with Crohn's disease presenting with persistent hypophosphatemia and insufficiency fractures while receiving regular iron infusions due to chronic gastrointestinal bleeding. Previously, the patient regularly received vitamin D and also zoledronic acid. The patient underwent bone biopsy of the iliac crest that showed typical signs of osteomalacia with dramatically increased osteoid volume and decreased bone formation. Analysis of the bone mineralization density distribution (BMDD) revealed a more complex picture: On the one hand, there was a shift to higher matrix mineralization, presumably owing to low bone turnover; on the other hand, a broadening of the BMDD indicating more heterogeneous mineralization due to osteomalacia was also evident. This is the first report on changes of bone histomorphometry and bone matrix mineralization in iron-induced osteomalacia. © 2017 American Society for Bone and Mineral Research.
BackgroundNuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC) in healthy subjects.MethodsTwenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model). IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD) signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength.ResultsThe phosphocreatine (PCr) signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion.ConclusionsIschemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo.Trial RegistrationClinicalTrials.gov: NCT00883467
Aberrant activation of the classical complement pathway is the common underlying pathophysiology of orphan diseases such as bullous pemphigoid, antibody‐mediated rejection of organ transplants, cold agglutinin disease, and warm autoimmune hemolytic anemia. Therapeutic options for these complement‐mediated disorders are limited and sutimlimab, a humanized monoclonal antibody directed against complement factor C1s, may be potentially useful for inhibition of the classical complement pathway. A phase I, first‐in‐human, double‐blind, randomized, placebo‐controlled, dose‐escalation trial of single and multiple doses of sutimlimab or placebo was conducted in 64 volunteers to evaluate safety, tolerability, pharmacokinetic, and pharmacodynamic profiles. Single and multiple infusions of sutimlimab were well tolerated without any safety concerns. sutimlimab exhibited a steep concentration–effect relationship with a Hill coefficient of 2.4, and an IC90 of 15.5 μg/mL. This study establishes the foundation for using sutimlimab as a highly selective inhibitor of the classical complement pathway in different diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.