Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK)9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome-wide in human (Homo sapiens) cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed a hitherto-unsuspected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the carboxyl-terminal domain (CTD) of pol II terminated at this novel checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, suggesting common mechanisms of termination.
Heterologous expression of multi-gene biosynthetic pathways in eukaryotic hosts is limited by highly regulated individual monocistrons. Dissimilar to prokaryotes, each eukaryotic gene is strictly controlled by its own regulatory elements, such as promoter and terminator. Consequently, parallel transcription can occur only when a group of genes is synchronously activated. A strategy to circumvent this limitation is the concerted expression of multiple genes as a polycistron. By exploiting the "stop-carry on" mechanism of picornaviruses, we have designed a sophisticated, yet easy-to-assemble vector system to heterologously express multiple genes under the control of a single promoter. For facile selection of correctly transformed colonies by basic fluorescence microscopy, our vector includes a split gene for a fluorescent reporter protein. This method was successfully applied to produce the psychotropic mushroom alkaloid psilocybin in high yields by heterologous expression of the entire biosynthetic gene cluster in the mould Aspergillus nidulans.
Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.
Combinatorial biosynthesis has great potential for designing synthetic circuits and amplifying the production of new active compounds. Studies on multienzyme cascades are extremely useful for improving our knowledge on enzymatic catalysis. In particular, the elucidation of enzyme substrate promiscuity can be potentially used for bioretrosynthetic approaches, leading to the design of alternative and more convenient routes to produce relevant molecules. In this perspective, plant-derived polyketides are extremely adaptable to those synthetic biological applications. Here, we present a combination of an in vitro CoA ligase activity assay coupled with a bacterial multigene expression system that leads to precursor-directed biosynthesis of 21 flavonoid derivatives. When the vast knowledge from protein databases is exploited, the herein presented procedure can be easily repeated with additional plant-derived polyketides. Lastly, we report an efficient in vivo expression system that can be further exploited to heterologously express pathways not necessarily related to plant polyketide synthases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.