An effective countermeasure against side-channel attacks is to mask all sensitive intermediate variables with one (or more) random value(s). When a cryptographic algorithm involves both arithmetic and Boolean operations, it is necessary to convert from arithmetic masking to Boolean masking and vice versa. At CHES 2001, Goubin introduced two algorithms for secure conversion between arithmetic and Boolean masks, but his approach can only be applied to first-order masking. In this paper, we present and evaluate new conversion algorithms that are secure against attacks of any order. To convert masks of a size of k bits securely against attacks of order n, the proposed algorithms have a time complexity of O(n 2 k) in both directions and are proven to be secure in the Ishai, Sahai, and Wagner (ISW) framework for private circuits. We evaluate our algorithms using HMAC-SHA-1 as example and report the execution times we achieved on a 32-bit AVR microcontroller.
Abstract. The Internet is rapidly evolving from a network of personal computers and servers to a network of smart objects ("things") able to communicate with each other and with central resources. This evolution has created a demand for lightweight implementations of cryptographic algorithms suitable for resource-constrained devices such as RFID tags and wireless sensor nodes. In this paper we describe a highly optimized software implementation of Elliptic Curve Cryptography (ECC) for the MSP430 series of ultra-low-power 16-bit microcontrollers. Our software is scalable in the sense that it supports prime fields and elliptic curves of different order without recompilation, which allows for flexible tradeoffs between execution time (i.e. energy consumption) and security. The low-level modular arithmetic is optimized for pseudo-Mersenne primes of the form p = 2 n − c where n is a multiple of 16 minus 1 and c fits in a 16-bit register. All prime-field arithmetic functions are parameterized with respect to the length of operands (i.e. the number of 16-bit words they consist of) and written in Assembly language, whereby we avoided conditional jumps and branches that could leak information about the secret key. Our ECC implementation can perform scalar multiplication on two types of elliptic curves, namely Montgomery curves and twisted Edwards curves. A full scalar multiplication using a Montgomery curve over a 159-bit field requires about 3.86 · 10 6 clock cycles when executed on an MSP430F1611 microcontroller.
Abstract. In this paper, we present a highly-optimized implementation of standards-compliant Elliptic Curve Cryptography (ECC) for wireless sensor nodes and similar devices featuring an 8-bit AVR processor. The field arithmetic is written in Assembly language and optimized for the 192-bit NIST-specified prime p = 2 192 − 2 64 − 1, while the group arithmetic (i.e. point addition and doubling) is programmed in ANSI C. One of our contributions is a novel lazy doubling method for multi-precision squaring which provides better performance than any of the previouslyproposed squaring techniques. Based on our highly optimized arithmetic library for the 192-bit NIST prime, we achieve record-setting execution times for scalar multiplication (with both fixed and arbitrary points) as well as multiple scalar multiplication. Experimental results, obtained on an AVR ATmega128 processor, show that the two scalar multiplications of ephemeral Elliptic Curve Diffie-Hellman (ECDH) key exchange can be executed in 1.75 s altogether (at a clock frequency of 7.37 MHz) and consume an energy of some 42 mJ. The generation and verification of an ECDSA signature requires roughly 1.91 s and costs 46 mJ at the same clock frequency. Our results significantly improve the state-of-the-art in ECDH and ECDSA computation on the P-192 curve, outperforming the previous best implementations in the literature by a factor of 1.35 and 2.33, respectively. We also protected the field arithmetic and algorithms for scalar multiplication against side-channel attacks, especially Simple Power Analysis (SPA).
Abstract. High performance, small code size, and good scalability are important requirements for software implementations of multi-precision arithmetic algorithms to fit resource-limited embedded systems. In this paper, we describe optimization techniques to speed up multi-precision multiplication and squaring on the AVR ATmega series of 8-bit microcontrollers. First, we present a new approach to perform multi-precision multiplication, called Reverse Product Scanning (RPS), that resembles the hybrid technique of Gura et al., but calculates the byte-products in the inner loop in reverse order. The RPS method processes four bytes of the two operands in each iteration of the inner loop and employs two carry-catcher registers to minimize the number of add instructions. We also describe an optimized algorithm for multi-precision squaring based on the RPS technique that is, depending on the operand length, up to 44.3% faster than multiplication. Our AVR Assembly implementations of RPS multiplication and RPS squaring occupy less than 1 kB of code space each and are written in a parameterized fashion so that they can support operands of varying length without recompilation. Despite this high level of flexibility, our RPS multiplication outperforms the looped variant of Hutter et al.'s operand-caching technique and saves between 40 and 51% of code size. We also combine our RPS multiplication and squaring routines with Karatsuba's method to further reduce execution time. When executed on an ATmega128 processor, the "karatsubarized RPS method" needs only 85 k clock cycles for a 1024-bit multiplication (or 48 k cycles for a squaring). These results show that it is possible to achieve high performance without sacrificing code size or scalability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.