We compared the activities of antifungal agents against a wide range of yeasts and filamentous fungi. The methodology of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) for yeasts and spore-forming molds was applied; and a total of 349 clinical isolates of Candida spp., other yeast species, Aspergillus spp., and nondermatophyte non-Aspergillus spp. were investigated. The average geometric mean (GM) of the MICs of the various drugs for Candida spp. were as follows: amphotericin B (AMB), 0.55 g/ml; liposomal amphotericin B (l-AMB); 0.35 g/ml; itraconazole (ITC), 0.56 g/ml; voriconazole (VRC), 0.45 g/ml; posaconazole (POS), 0.44 g/ml; and caspofungin (CPF), 0.45 g/ml. The data indicated that the majority of Candida spp. were susceptible to the traditional and new antifungal drugs. For Aspergillus spp., the average GM MICs of AMB, l-AMB, ITC, VRC, POS, and CPF were 1.49 g/ml, 1.44 g/ml, 0.65 g/ml, 0.34 g/ml, 0.25 g/ml, and 0.32 g/ml, respectively. For the various zygomycetes, the average GM MICs of AMB, l-AMB, ITC, and POS were 1.36 g/ml, 1.42 g/ml, 4.37 g/ml, and 1.65 g/ml, respectively. Other yeastlike fungi and molds displayed various patterns of susceptibility. In general, the minimal fungicidal concentrations were 1 to 3 dilutions higher than the corresponding MICs. POS, AMB, and l-AMB showed activities against a broader range of fungi than ITC, VRC, and CPF did. Emerging pathogens such as Saccharomyces cerevisiae and Fusarium solani were not killed by any drug. In summary, the EUCAST data showed that the in vitro susceptibilities of yeasts and filamentous fungi are variable, that susceptibility occurs among and within various genera and species, and that susceptibility depends on the antifungal drug tested. AMB, l-AMB, and POS were active against the majority of pathogens, including species that cause rare and difficult-to-treat infections.
We evaluated the effectiveness of different sizes of bioactive glass S53P4 against Staphylococcus aureus biofilms grown on metal discs in vitro. S. aureus biofilms were cultivated on titanium discs. BAG-S53P4 (0.5-0.8 mm and <45 µm) were placed in contact with the discs containing biofilms. Glass beads (0.5 mm) were used as a control. After each interval, the pH from each sample was measured. Colony forming units were counted for the biofilm recovery verification. In parallel, we tested the activity of bioactive glass against S. aureus planktonic cells. We found that BAG-S53P4 can suppress S. aureus biofilm formation on titanium discs in vitro. The suppression rate of biofilm cells by BAG-S53P4 <45 µm was significantly higher than by BAG-S53P4 0.5-0.8 mm. BAG-S53P4 has a clear growth-inhibitory effect on S. aureus biofilms. BAG-S53P4 <45 µm is more efficient against biofilm growth in vitro comparing with BAG-S53P4 0.5-0.8 mm. Bioactive glass S53P4 has potential to be used as bone substitute for the resolution of infection complications in joint replacement surgeries and treatment of chronic osteomyelitis.
For fluoroquinolones, standard media might be insufficient to investigate the impact of PB on bacterial killing. MHB containing 12% albumin seems to be a promising medium in this context. For moxifloxacin and trovafloxacin, PB leads to significant reduction of antimicrobial activity.
The bacteria in implant-related infections can evade host defenses by forming biofilms. The more we understand biofilm behavior, the better we can fight against then clinically. In vitro models for biofilms allow tests simulating in vivo conditions. In this study we evaluated the Minimum Biofilm Eradication Concentration-High Throughput Plates (MBEC TM -HTP) as biofilm in vitro model for studies of implant associated infections. Staphylococcus aureus and Staphylococcus epidermidis biofilms were grown on MBEC TM -HTP. To ensure the biofilm formation, antibiotic susceptibility tests and scanning electron microscopy (SEM) was carried out. Susceptibility tests were carried out using gentamicin, vancomycin, rifampicin, fosfomycin, clindamycin, and linezolid. Colony forming units counting were carried out. Minimal inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) were estimated. The CFU counting showed potency of rifampicin and daptomycin against S. epidermidis biofilms and rifampicin against S. aureus biofilms. SEM images showed proteic material in contact with cells. The differences between BIC and MIC demonstrated the biofilm formation as well as the SEM images. Rifampicin and daptomycin are good choices against biofilm related infections. Moreover, after suggested modifications, the model used in this study is eligible to further studies of implant associated infections. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.