Purpose Interim positron emission tomography (PET) using the tracer, [F]fluorodeoxyglucose, may predict outcomes in patients with aggressive non-Hodgkin lymphomas. We assessed whether PET can guide therapy in patients who are treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Patients and Methods Newly diagnosed patients received two cycles of CHOP-plus rituximab (R-CHOP) in CD20-positive lymphomas-followed by a PET scan that was evaluated using the ΔSUV method. PET-positive patients were randomly assigned to receive six additional cycles of R-CHOP or six blocks of an intensive Burkitt's lymphoma protocol. PET-negative patients with CD20-positive lymphomas were randomly assigned or allocated to receive four additional cycles of R-CHOP or the same treatment with two additional doses rituximab. The primary end point was event-free survival time as assessed by log-rank test. Results Interim PET was positive in 108 (12.5%) and negative in 754 (87.5%) of 862 patients treated, with statistically significant differences in event-free survival and overall survival. Among PET-positive patients, 52 were randomly assigned to R-CHOP and 56 to the Burkitt protocol, with 2-year event-free survival rates of 42.0% (95% CI, 28.2% to 55.2%) and 31.6% (95% CI, 19.3% to 44.6%), respectively (hazard ratio, 1.501 [95% CI, 0.896 to 2.514]; P = .1229). The Burkitt protocol produced significantly more toxicity. Of 754 PET-negative patients, 255 underwent random assignment (129 to R-CHOP and 126 to R-CHOP with additional rituximab). Event-free survival rates were 76.4% (95% CI, 68.0% to 82.8%) and 73.5% (95% CI, 64.8% to 80.4%), respectively (hazard ratio, 1.048 [95% CI, 0.684 to 1.606]; P = .8305). Outcome prediction by PET was independent of the International Prognostic Index. Results in diffuse large B-cell lymphoma were similar to those in the total group. Conclusion Interim PET predicted survival in patients with aggressive lymphomas treated with R-CHOP. PET-based treatment intensification did not improve outcome.
Pronounced resistance of lung cancer cells to radiotherapy and chemotherapy is a major barrier to successful treatment. Herein, both tumor hypoxia and the upregulation of the cellular antioxidant defense systems observed during malignant progression can contribute to radioresistance. We recently found that exposure to chronic cycling severe hypoxia/reoxygenation stress results in glutamine-dependent upregulation of cellular glutathione (GSH) levels and associated radiation resistance opening novel routes for tumor cell-specific radiosensitization. Here, we explored the role of the mitochondrial citrate carrier (SLC25A1) for the improved antioxidant defense of cancer cells with tolerance to acute and chronic severe hypoxia/reoxygenation stress and the use of pharmacologic SLC25A1 inhibition for tumor cell radiosensitization. Exposure to acute or chronic cycling severe hypoxia/reoxygenation stress triggered upregulated expression of SLC25A1 in lung cancer, prostate cancer, and glioblastoma cells in vitro. Interestingly, exposure to ionizing radiation (IR) further promoted SLC25A1 expression. Inhibition of SLC25A1 by 1,2,3-benzene-tricarboxylic acid (BTA) disturbed cellular and mitochondrial redox homeostasis, lowered mitochondrial metabolism, and reduced metabolic flexibility of cancer cells. Even more important, combining IR with BTA was able to overcome increased radioresistance induced by adaptation to chronic cycling severe hypoxia/reoxygenation stress. This radiosensitizing effect of BTA-treated cells was linked to increased reactive oxygen species and reduced DNA repair capacity. Of note, key findings could be reproduced when using the SLC25A1-inhibitor 4-Chloro-3-[[(3-nitrophenyl)amino]sulfonyl]-benzoic acid (CNASB). Moreover, in silico analysis of publically available databases applying the Kaplan–Meier plotter tool () revealed that overexpression of SLC25A1 was associated with reduced survival of lung cancer patients suggesting a potential link to aggressive cancers. We show that SLC25A1 can contribute to the increased antioxidant defense of cancer cells allowing them to escape the cytotoxic effects of IR. Since upregulation of SLC25A1 is induced by adverse conditions in the tumor environment, exposure to IR, or both pharmacologic inhibition of SLC25A1 might be an effective strategy for radiosensitization of cancer cells particularly in chronically hypoxic tumor fractions.
Unraveling the molecular alterations underlying improved ROS defense of anoxia-tolerant cancer cells allows the design of rational strategies for overcoming radiation resistance caused by tumor cell heterogeneity in hypoxic tumors. Antioxid. Redox Signal. 25, 89-107.
Oral prednisone is considered the standard first-line therapy of adult immune thrombocytopenia, but its long-term efficacy is limited. We performed a prospective, randomized, multicenter trial comparing daily prednisone (1-2 mg/kg/day for 2-4 weeks with subsequent dose reduction) with six 3-week cycles of pulsed dexamethasone (0.6 mg/kg/day, days 1-4). The primary endpoint was remission duration. Of 26 patients enrolled, 22 were evaluable for response. Nine were treated with prednisone and 13 with dexamethasone. The median follow-up was 46 months. The initial response rate (PLT ≥50 × 109/l) was 100% in both groups. Long-term remissions were significantly more frequent with pulsed dexamethasone than with daily prednisone (12 months posttreatment: 77 vs. 22%; p = 0.027). The side effects were similar, but patients on dexamethasone suffered significantly more often from insomnia, while patients on prednisone tended to have more infectious complications. Although the cumulative cortisol equivalent dose was comparable during the first 4 weeks of therapy, it was significantly higher in the dexamethasone arm than in the prednisone arm during the ensuing treatment period. We conclude that repeated cycles of pulsed dexamethasone are a good alternative to daily prednisone as a first-line treatment of immune thrombocytopenia. The duration and intensity of glucocorticoid therapy are important determinants of treatment outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.