Standard-Nutzungsbedingungen: Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte. Terms of use: This document may be saved and copied for your personal and scholarly purposes. You are not to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. If the document is made available under a Creative Commons Licence you may exercise further usage rights as specified in the licence.
Deciding which vocabulary terms to use when modeling data as Linked Open Data (LOD) is far from trivial. Choosing too general vocabulary terms, or terms from vocabularies that are not used by other LOD datasets, is likely to lead to a data representation, which will be harder to understand by humans and to be consumed by Linked data applications. In this technical report, we propose TermPicker: a novel approach for vocabulary reuse by recommending RDF types and properties based on exploiting the information on how other data providers on the LOD cloud use RDF types and properties to describe their data. To this end, we introduce the notion of so-called schema-level patterns (SLPs). They capture how sets of RDF types are connected via sets of properties within some data collection, e.g., within a dataset on the LOD cloud. TermPicker uses such SLPs and generates a ranked list of vocabulary terms for reuse. The lists of recommended terms are ordered by a ranking model which is computed using the machine learning approach Learning To Rank (L2R). TermPicker is evaluated based on the recommendation quality that is measured using the Mean Average Precision (MAP) and the Mean Reciprocal Rank at the first five positions (MRR@5). Our results illustrate an improvement of the recommendation quality by 29 − 36% when using SLPs compared to the beforehand investigated baselines of recommending solely popular vocabulary terms or terms from the same vocabulary. The overall best results are achieved using SLPs in conjunction with the Learning To Rank algorithm Random Forests.
Interactive query expansion can assist users during their query formulation process. We conducted a user study with over 4,000 unique visitors and four different design approaches for a search term suggestion service. As a basis for our evaluation we have implemented services which use three different vocabularies: (1) user search terms, (2) terms from a terminology service and (3) thesaurus terms. Additionally, we have created a new combined service which utilizes thesaurus term and terms from a domain-specific search term recommender. Our results show that the thesaurus-based method clearly is used more often compared to the other single-method implementations. We interpret this as a strong indicator that term suggestion mechanisms should be domainspecific to be close to the user terminology. Our novel combined approach which interconnects a thesaurus service with additional statistical relations outperformed all other implementations. All our observations show that domainspecific vocabulary can support the user in finding alternative concepts and formulating queries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.