The isolation of (Z,Z)-pandanamine (1) and its corresponding isomers (Z,E)-pandanamine (2) and (E,E)-pandanamine (3) from Stichoneuron calcicola of the family Stemonaceae is of outstanding chemosystematic importance. This alkaloid was previously only known from the family Pandanaceae, where it was accompanied by a series of pyrrolidines, collectively called Pandanus alkaloids. The pyrrolidines pandamarilactonines A (4), B (5), C (6), and D (7) were also detected in the present study, most likely representing artificial cyclization products of pandanamine (1-3) formed by acidic conditions during chromatographic separation on silica gel. Similar structures were found in various Stemona alkaloids, suggesting a close relationship between the two plant families. Structurally, pandanamine (1-3) can be regarded as a direct precursor of croomine (8), originally isolated from Croomia, a genus closely related to Stichoneuron, but later also found in various Stemona species. The co-occurrence of pandanamine (1-3), croomine (8), and stichoneurin (9) in the family Stemonaceae represents a sound argument for a new interpretation of the biogenetic origin of Stemona alkaloids and at the same time substantiates the removal of the family from the order Dioscoreales and its inclusion into Pandanales, as already suggested by DNA sequencing.
On the basis of a comparison of 42 Stemona samples, representing eight different species collected and cultivated in Thailand, species-specific accumulation trends of Stemona alkaloids were analyzed. An overview was achieved by comparative HPLC analyses of methanolic crude extracts of underground parts coupled with diode array or evaporative light scattering detectors. All major compounds were isolated and their structures elucidated by NMR and MS analyses. Protostemonine- and stichoneurine-type derivatives dominated, from which the latter characterize S. tuberosa and S. phyllantha accumulating species-specific isomers of tuberostemonine (3). The widespread S. curtisii and S. collinsiae clearly deviate by protostemonine-type derivatives dominated by stemofoline (10) and/or didehydrostemofoline (11). Further diversification within this structural type results from a mutual accumulation of derivatives with a pyrrolo- or pyridoazepine nucleus, leading to chemical variability in S. curtisii and S. aphylla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.