Abstract. The weak-wind Stable Boundary Layer (wwSBL) is poorly described by theory and breaks basic assumptions necessary for observations of turbulence. Understanding the wwSBL requires distributed observations capable of separating between submeso and turbulent scales. To this end, we present the Large Eddy Observatory, Voitsumra Experiment 2019 (LOVE19) which featured 1350 m of fiber optic distributed sensing (FODS) of air temperature and wind speed, as well as an experimental wind direction method, at scales as fine as 1 s and 0.127 m in addition to a suite of point observations of turbulence and ground-based remote sensing. Additionally, flights with a fiber optic cable attached to a tethered balloon provide an unprecedented detailed view of the boundary layer structure with a resolution of 0.254 m and 10 s between 1–200 m height. Two examples are provided demonstrating the unique capabilities of the LOVE19 data for examining boundary layer processes: 1) FODS observations between 1m and ~200 m height during a period of gravity waves propagating across the entire boundary layer and 2) tracking a near-surface, transient submeso structure that causes an intermittent burst of turbulence. All data can be accessed at Zenodo through the DOI https://doi.org/10.5281/zenodo.4312976 (Lapo et al., 2020a).
Abstract. The weak-wind boundary layer is characterized by turbulent and submesoscale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber-optic distributed sensing (FODS) potentially opens the door to observing a wide range of atmospheric processes on a spatially distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of seconds and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively heated fiber-optic cables with opposing orientations to impose directionally sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of a range of microstructure parameters including aspect ratio, spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally sensitive heat loss is explored using computational fluid dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension, it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.
Abstract. The weak-wind stable boundary layer (wwSBL) is poorly described by theory and breaks basic assumptions necessary for observations of turbulence. Understanding the wwSBL requires distributed observations capable of separating between sub-mesoscales and turbulent scales. To this end, we present the Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) which featured 2105 m of fiber-optic distributed sensing (FODS) of air temperature and wind speed, as well as an experimental wind direction method, at scales as fine as 1 s and 0.127 m in addition to a suite of point observations of turbulence and ground-based remote sensing profiling. Additionally, flights with a fiber-optic cable attached to a tethered balloon (termed FlyFOX, Flying Fiber Optics eXperiment) provide an unprecedentedly detailed view of the boundary layer structure with a resolution of 0.254 m and 10 s between 1 and 200 m height. Two examples are provided, demonstrating the unique capabilities of the LOVE19 data for examining boundary layer processes: (1) FODS observations between 1 and 200 m height during a period of gravity waves propagating across the entire boundary layer and (2) tracking a near-surface, transient, sub-mesoscale structure that causes an intermittent burst of turbulence. All data can be accessed at Zenodo through the DOI https://doi.org/10.5281/zenodo.4312976 (Lapo et al., 2020a).
In the atmospheric boundary layer, phenomena exist with challenging properties such as spatial heterogeneity, particularly during stable weak wind situations. Studying spatially heterogeneous features requires spatially distributed measurements on fine spatial and temporal scales. Fiber-Optic Distributed Sensing (FODS) can provide spatially distributed measurements, simultaneously offering a spatial resolution on the order of decimeters and a temporal resolution on the order of seconds. While FODS has already been deployed to study various variables, FODS wind direction sensing has only been demonstrated in idealized wind tunnel experiments. We present the first distributed observations of FODS wind directions from field data. The wind direction sensing is accomplished by using pairs of actively heated fiber optic cables with cone-shaped microstructures attached to them. Here we present three different methods of calculating wind directions from the FODS measurements, two based on using combined wind speed and direction information and one deriving wind direction independently from FODS wind speed. For each approach, the effective temporal and spatial resolution is quantified using spectral coherence. With each method of calculating wind directions, temporal resolutions on the order of tens of seconds can be achieved. The accuracy of FODS wind directions was evaluated against a sonic anemometer, showing deviations of less than 15° most of the time. The applicability of FODS for wind direction measurements in different environmental conditions is tested by analysing the dependence of FODS wind direction accuracy and observable scales on environmental factors. Finally, we demonstrate the potential of this technique by presenting a period that displays spatial and temporal structures in the wind direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.