The forest and forest products form one of the most important basis for the transfer to a bio-based economy in Sweden. About 75% of the area covered by forest in Sweden is used industrially to produce raw material for the wood-refining industries. Every year, this cluster uses 75 million m 3 of roundwood and has an export value of €12 billion. This review paper is devoted to the wood mechanical industry, i.e. the industry which turns the forest into sawn timber, packaging, construction wood, furniture and interior fittings. The sawmills consume about half of the volume of softwood which is felled, and about two-thirds of the sawn timber go to export without any further refining within the country. Nevertheless, in spite of the relatively low degree of refinement in the sawmill and the fact that the sawmills in general over time have a very low profitability, they are responsible for 70-80% of the forest owners' profits on the sale of timber. An increased upgrading of the sawn timber within the country is desirable from a national economic viewpointincreased employment opportunities, increased export income, etc. It should then in the first place be for products with a higher added value, such as furniture and fittings. Today, the refinement value is 15-20 times higher for products from joinery and furniture industries compared to that of the sawn timber, and the added value of the wood within the building industry is only about 1.5 times.
Abstract:The literature contains a large number of bioclimate, climate and biometric models for estimating the production of different species or stands under specific conditions on a defined site or models giving the distribution of a single species. Depending on the model used, the amount of input data required varies considerably and often involves a large investment in time and money. The purpose of this study was to create a model to estimate the annual above-ground biomass production of various species from site conditions defined by mean annual temperature and mean annual precipitation. For this approach, the Miami model of Lieth was used as a base model with some modifications. This first version of the modified model was restricted to sites in Sweden, where changes in the soil and groundwater level were relatively small, and where the growth of land vegetation was mostly dependent on temperature. A validation of this model has shown that it seems possible to use the Miami model to estimate the annual above-ground biomass production of various species, and that it was possible to compare the annual above-ground biomass production of different species on one site, as well as the annual above-ground biomass production of different species on different sites using the modeled data.
As a supplier to the furniture industry, the particleboard industry is searching for opportunities to reduce costs, weight, and formaldehyde emissions. One such opportunity is to use monocotyledons such as straw and hemp, as well as grasses like reed canary grass. A major problem when using reed canary grass or other monocotyledons in combination with wood is the difference in their surface properties, leading to poor reactivity and wettability with adhesives such as melamine urea formaldehyde. To this end, either the surface of the particles must be modified in some way, or different adhesives must be used. The purpose of this paper is to present adhesives, surfactants, coupling agents, and pre-treatment methods that can be used in combination with monocotyledons to improve compatibility with wood. Some of the methods have been tested on reed canary grass. The results show a wide range of strength values for the joint between wood and untreated or pre-treated reed canary grass glued with different adhesives, with and without a surfactant and a coupling agent. Isocyanate-based adhesives provided relatively strong bonds, and polyvinyl acetate, acryl, and epoxy adhesives were also effective. The most effective method was pre-treatment followed by adhesives in combination with a coupling agent.
The purpose of this conceptual study was to introduce a possibility of integrating a surface treatment of monocotyledons by enzymes into particleboard production to provide a substitute raw material to replace wood particles. Because of the greater competition for wood as a raw material for particleboard production, there is increasing interest in monocotyledons as a substitute for wood. Monocotyledons, such as grass or cereal straw, differ from wood mostly in that they have a surface layer of waxes and embedded silica. If particles of monocotyledons are to be used in combination with wood in particleboards they must be modified. Using the concept of anaerobic digestion, it is possible to modify the surface of monocotyledon particles, having methane as a side product and to achieve a process, which leads to greater product diversity. A SWOT analysis was used to evaluate the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.