The genetic defect responsible for hypersensitivity of Chinese hamster ovary (CHO) irs-20 cells to ionizing radiation was found to be recessive in nature and could be complemented to produce wild-type radiosensitivity in irs-20/human hybrids. The radiosensitivities of six hybrid clones were determined based on their colony-forming ability under continuous irradiation at 6 cGy/h. A parallel cytogenetic analysis revealed a concordance between the presence or absence of human chromosome 8 and the resistant or sensitive phenotype. Confirming evidence was obtained using human chromosome 8-specific PCR primers. Positive amplification was obtained in hybrids with wild-type radiosensitivity, while no amplification was obtained in sensitive hybrids. Complementation analysis between radiosensitive CHO irs-20 and murine scid cell lines was carried out to determine whether the defects leading to their ionizing radiation hypersensitivity could be corrected by genetic complementation in the hybrids. Complementation did not occur. A transient V(D)J recombination assay after the introduction of the RAG1 and RAG2 genes indicated that the V(D)J recombination ability of the CHO irs-20 cells was about 10% of that for the CHO wild-type cells for signal join formation with an 80% joining fidelity and only 3% of the parental level for coding join formation. These data show that murine scid and irs-20 mutant hamster cells fall into the same complementation group and show similar defects in V(D)J recombination.
Background: Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map-based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology.
We describe a new approach for low-resolution physical mapping using pooled DNA probe from mixed (non-clonal) populations of human-CHO cell hybrids and reverse chromosome painting. This mapping method is based on a process in which the human chromosome fragments bearing a complementing gene were selectively retained in a large non-clonal population of CHO-human hybrid cells during a series of 12- to 15-Gy gamma irradiations each followed by continuous growth selection. The location of the gene could then be identified by reverse chromosome painting on normal human metaphase spreads using biotinylated DNA from this population of "enriched" hybrid cells. We tested the validity of this method by correctly mapping the complementing human HPRT gene, whose location is well established. We then demonstrated the method's usefulness by mapping the chromosome location of a human gene which complemented the defect responsible for the hypersensitivity to ionizing radiation in CHO irs-20 cells. This method represents an efficient alternative to conventional concordance analysis in somatic cell hybrids where detailed chromosome analysis of numerous hybrid clones is necessary. Using this approach, it is possible to localize a gene for which there is no prior sequence or linkage information to a subchromosomal region, thus facilitating association with known mapping landmarks (e.g. RFLP, YAC or STS contigs) for higher-resolution mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.