Altered systemic levels of 6-formylindolo [3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low. At very low concentrations FICZ influences circadian rhythms, responses to UV light, homeostasis associated with pro-and anti-inflammatory processes, and genomic stability. Here, we demonstrate that, if its metabolic clearance is compromised, femtomolar background levels of this compound in cell-culture medium are sufficient to up-regulate CYP1A1 mRNA and enzyme activity. The oxidants UVB irradiation and hydrogen peroxide and the model AHR antagonist 3′-methoxy-4′-nitroflavone all inhibited induction of CYP1A1 enzyme activity by FICZ or 2,3,7,8-tetrachlorodibenzo-p-dioxin, thereby subsequently elevating intracellular levels of FICZ and activating AHR. Taken together, these findings support an indirect mechanism of AHR activation, indicating that AHR activation by molecules with low affinity actually may reflect inhibition of FICZ metabolism and raising questions about the reported promiscuity of the AHR. Accordingly, we propose that prolonged induction of AHR activity through inhibition of CYP1 disturbs feedback regulation of FICZ levels, with potential detrimental consequences.
Several polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT). CYP1A1 activity was induced in HaCaT cells by all three compounds, and when they were added together with FICZ, a prolonged activation was observed after a dose-dependent inhibition period. The same pattern of responses was seen at the transcriptional level as determined with a CYP1A1 reporter assay in human liver hepatoma (HepG2) cells. To test the ability of the polyphenols to activate the AHR in the absence of FICZ, the cells were treated in medium, which in contrast to commercial batches of medium did not contain background levels of FICZ. Importantly, AHR activation was only observed in the commercial medium. Taken together, these findings suggest that QUE, RES, and CUR induce CYP1A1 in an indirect manner by inhibiting the metabolic turnover of FICZ. Humans are exposed to these compounds through the diet and nutritional supplements, and we propose that altered systemic levels of FICZ caused by such compounds may have physiological consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.