<p><strong>Introduction</strong></p> <p>Optical properties are required information for correct models of the early solar system and protoplanetary disks. To this day the properties used in the models are mostly provided by laboratory studies of primitive analogs. Comets provide us with a closer analog to the protoplanetary material but have been, until recently, difficult to observe. Rosetta has given us the unique opportunity to observe with unprecedented accuracy.</p> <p>The Microwave Instrument for the Rosetta Orbiter (MIRO) (Gulkis et al. 2007) measured the thermal radiation emitted from the subsurface of comet 67P/Churyumov-Gerasimenko (hereafter 67P). MIRO operated at millimetre (hereafter MM) and sub-millimetre (hereafter SMM) wavelengths with corresponding frequencies of 188.2 GHz (1.594 mm) and 562.8 GHz (0.533 mm), respectively.</p> <p>The thermal radiation received by MIRO is strongly dependant on the sub-surface material properties, mainly its temperature and optical constants. Our aim is to derive from these observations the complex refractive index of the material of comet 67P's subsurface. To achieve this, we match the brightness temperatures measured by MIRO with synthetic values derived from a one-dimensional thermal model of the subsurface combined with radiative transfer models.</p> <p><strong>MIRO data selection</strong></p> <p>MIRO data used in this study are taken from the ESA Planetary Science Archive. We selected only those measurements where the orbiter was close to the surface of the nucleus, to minimise the MIRO beam size on the nucleus and, thus, to be able to focus on specific areas of the comet. Additionally, we set our focus on flat areas, which allows us to use a one-dimensional thermal model.</p> <p>Just before equinox in March 2016, the Rosetta orbiter was 11 km from the surface of 67P, observing the relatively flat region Imhotep (Auger et al. 2015). This region is located on the bottom of the big lobe and consists of four sub-regions, a,b,c and d (Thomas et al. 2018). We analysed MIRO measurements in sub-region 'a', as it is the smoothest and closest to the equator (Thomas et al. 2018). Fig. 1 illustrates the location of sub-region 'a' on the nucleus.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAZAAAAEyCAYAAADUa4YpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAFFwAABRcBpcZNXQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7L1pjBzXeTb6nKreu6d7OKRIrTRl7bIkK5KgxUscW3EWGfBFoOTLjy+fjcAxchH/CGwgMBw4iPPjwsFN7ADOYiRIvsRxNsOObfmzbyg5XqREkuVYkiVZDklJoSSbtKghZ6Z7eu+uOvdH9XP6qTM1lOhIJIesFyBnpruWU6eq3ud9n3c5xlprkUsuZ7nwNdDXIX81Tr0EQQBjzKkexlkl5gQmvPBqDiSXXE4HsdZmAkQuueTy35McQHLZsuKDQg4OueRyciUHkFxOC/GVv3oNueSSy+kpOYDk8qpKFgjk4JBLLmeG5ACSy48tmwWcc3DI5ZUSa20eRD+NJQeQXDZInpGUy+ki+XN3eksOIGeZ5BlJueSSyyslOYCcQZKDw+kho9EI//iP/4hHH30UhUIBu3fvxnve8x7UajUEQXCqh5dLLq+YmLyQ8PSSzYLOm32Xy+kjcRzjC1/4Aj7zmc9gOBwiCAIEQYAwDFEqlXDNNdfgXe96F5aWllAoFBCGIabTqftnjEEQBLDW5mAjkhcTnlw5kULCHEBOomSlqmZ9nsvWEWstDh48iJWVFTzxxBP48pe/jCiKMJ1OneIjMBSLRRSLRbRaLYzHYywtLWEwGKT+BUGAXbt24cYbb8Qv//Ivo1arnepLPOWSA8jJlRxAToFkpabmU3vmibUWURTh6NGjWFtbw3333YdvfOMbmEwmsNYijmNEUZTKHuLvBJEoihDHMYIgwHQ6dX8DQKFQQLlcRrFYxJ49e3DjjTdiz5492L59OxYWFrC4uJjyXOI4Rr1ed/ufiV5LDiAnV3IAeQUlr3Y+u8Rai+FwiF6vh8ceewyTyQSLi4s4cuQIVlZWcOTIESwvL+PFF1/EdDrFeDwGAIRhCCChsay1DlCo7OM4RqFQQKFQcEBDAOE+3B5IgKRYLKJSqQBIlGij0UC1WsWOHTvQ7XbR7XYxHo/RarUQBAF27tyJO+64A5dccskZBSQ5gJxcyQHkZUoODrmoHDhwAPfffz/+7d/+DcPh0Fn19Cj4N4AUADCeweeHn/PvOI4xHo9RLBZTQAPAeSD0UEqlUur7QqGAarWKIAjQarUwHA5hrUWhUEC/30cYhhiPx07BFotFXHjhhbj00ktx3XXX4ZprrkGxWDwJs/fqSQ4gJ1fOOgDJq53PLlHAt9ZieXnZKclWq+WUtL4HmxkJ6+vraLfb2Lt3L/bu3Ys4jhGGofMUjDGpZ8kYkwISAA48/M+BBCAAOI+kUCi4Y3AfHpv0lTEG4/HYnb9YLKJcLiMIAlSrVZRKJUwmE3fcwWAAYwzK5TKstQ68giDAhRdeiDvuuAO33nqrO/dWkxxATq6c0QDCl3mLDfsVl+l0iueeew69Xg+vfe1rUa/XU5y7tRa9Xg8//OEPsby8jOXlZbRaLVx88cXYuXMnGo3GlnwpoyjCXXfdhQMHDmB5eRlHjx5FHMcwxiAMQ1SrVVx++eV4xzvegXq9jkqlgslkgna7jX//93/H4cOHcfToUURRhKWlJRw6dAi9Xg8AUiDAudG/1XvQz0kX0VMJgsB9TyBQikpBiN4HgaJYLMIYg9Fo5PYpl8toNpuYTqcIw9Bld1WrVXQ6HQwGAwBwx1aKjMd+zWteg9tvvx233XZbyhPaCqJznMurL2c8gGRZemeDjMdj7N27F48++iiOHTuG1dVVGGNw/vnn413veheuuOIKDIdDPPLII7jnnntw5MgRtNttlEqllBW3uLiIt771rXjb296GhYWFU3xVL1+63S4+97nPYe/evU4BqrehgWtSS0EQODpKLXDf+ucxVAH7lfgKIKSboihywMH9uB0D7nxeCS78HID7Sa+H90mD8sViEc1mE2EYIooiF4wvlUrodrsYDAZurAQYXj/v73A4xGg0wtLSEq655hrceOONuOiii7C0tOS8t9PZoNhKgLfVJQeQM1Amkwm+8IUv4Atf+IJTXpPJxFEthUIB5557Lvr9Pg4dOpSiXHwLjtb07t27ce211+K6665DpVLBysoKAOD6669HoXBqakwnkwkOHjyIYrGIc845B2EYolgs4tvf/jb++q//Gt1u110TlT0Ap5j5j4qb184ANr0HnR8qdm7LuITv7dJzCIIA5XIZrVYL0+kU6+vrqX186ozPK8dD0OFnrBPROIrGXYIgQLPZRLlcTsVO4jjGaDRCEASYTCZu/DzPwsICwjBEq9VCv9/HysqKAylrLYrFImq1Gq666iosLCzgkksuwete9zq0Wq3TDkxyADl5kgPIGST9fh9PP/007rrrLjz77LNOccZx7CxrWqVhGG5QkCq0ciuVCiqVirNK+bxQAe3evRu//du/7QK6J0uGwyH+4i/+Ag8++CAAoFQqYceOHfiJn/gJ7N27F5PJxFnYwMZnQS39KIoQhqH7ByQxBqWUaMmTElKrn8fjXCpYhWGIHTt2YDAYoFarYW1tDZPJxCl9joHHUJqKMQqlu0qlkot/ZB3HGIN6vZ4K1nMe9NwcG8GT4FupVDCdTjEajVLPgJ6L42g0GviFX/gFvOlNbzrp9/94kgPIyZMzGkCAudt/JstoNMK9996LL37xi+j1ejDGoFAoOM9jPB6nlCGF1iWAlKKk9UrgUJCh9a3W85vf/Ga8973vdSmp+/btwwUXXIDpdIpjx47hP/7jP/DOd74T27Zte0Ws1WeffRZ/+Id/iCNHjqQ+X1hYQKFQSNE0vDYgDRq+YUFArFQqbi4mk4kLbBtj0Gg0UCwW3Xzycx5Pj8lzlstl7NixA6PRCN1uN1XL4QMIiwqp9OM4dn9r7KNUKqFUKjnPwo+9hGGIWq3mPIhSqeTiXN1uF8PhMBVboRcCIJU+PJ1OUSwWUa/XUS6XMRwOMZlMUKlUnNc5HA5x3nnn4cMf/jAajcZ/676+UpIDyMmTHEC2sEwmE3z961/HV77yFTz//POw1qJSqTiLk8rNV1gMoAJzy5kWKGsFAGAwGLi2GWoZA0j9rFQqeN/73of77rsPDz/8cMrKJWVWKBTwlre8BXfeeafj6H2ZTqc4cOAA9u/fj9FohEsvvRTNZhNra2s4dOgQDh48iH379qHT6Til6mcmLS4uYjweb1Cuul2xWHTAwPmgwrzgggswGo3QbredsudcMk5QKBSwtrYGIHm+qMy5Lc/FQD1Ta1dXV50VTw9GwU3/ce50fFEUOQDhZwQvjm9paQnT6dRtQxCJogij0QiDwQDtdtuBk4oG7nlvuX+5XEa5XMb6+jpqtRqMMahWqw6MrrvuOtxyyy245JJLnKFwqqitHEBOnuQAsgWl3+/jsccew2c/+1kcPHgQQRBgNBo52oI0BzC3ulWhk8IC4GIjhUIBk8kEk8kExWIxpZjU+6D4cQQem0ooK7uH/Pwtt9yCX/qlX0q13ojjGJ/85CfxzW9+E+VyGYVCIaXgsqg2f1zT6RSNRgNLS0sYj8cYDAYuQ4nXMh6PUSqVHIgQ4KgcmRpL2o9tRqy1zqpvNpvo9/sYjUaO6uE812o1RFGEXq+HarWKxcVFB2aMyURRhMlksoFSIwjp9dIYIIBQmTMDSz0Unq9UKmE4HKYoOWstBoMB4jh2P+lJqQfiJw4QUGgoxHGMcrnsDAt6O3EcOyB9zWteg5//+Z/HZZdd5sDmZIJJDiAnT04EQPJuvKdY4jjGU089hb//+7/Hvn37MBgMXHGYKprxeOy4a9I5YRg6cKC3US6XsbKy4ixbAE5x+1Ywvyco+ODBgDJ/p+Imrx6GIer1Oqy1eOihh3D06FG8733vc9XTP/rRj3DvvfemKCEFL4rSOQAcWPJ8g8EAa2trLi0XSECSVjhTWpvNJtbX1zEajTCZTBynT8+AilWt/GKx6ICFljcBgWOJogiVSgXdbhdRFGE4HKJer2M0GqFYLLoANpDOBtPkBb12rS1hgN/fj1ljCwsLiKIIg8HAnTMIAgwGA2dQ0KMgEDCeo/da76ufNabJAUBCn47HYwe8o9EI+/btw/79+7Fz5040m03s3r0bN910Ey677DIHfLmcfbIlPZDNgsSnWqbTKX74wx/isccew/LyMowxWFxcxNraGuI4xg033IAoinDs2DH0ej0UCgU88sgjOHDggHupNa5RKpVSNQ60SMfjMaIoQr1ex3A4BADs3LnTBcSn0yk6nY5ThJp+qplCWjCntA4wV+pUDsqfLywsoFarYTQaORqF9+Nnf/Znceedd6Lb7eJDH/oQjhw54hQclSVBSZWab5XzfFqRXa/X0Wg0nAehWUgLCwsoFouuvUe323XpywBcDIgeBjOhmEnFax2NRqnrr9frblvesx07djhvZzgcot/vu1iHxi50vpXK0jgVPTMKM8Wm0ykqlQp27NgBAE6hD4dDB/y831EUuWdCQUC9IY5Df3KcfBZKpVIKPElxEcx0X362Z88eXH/99bj55ptx4YUXvmpAknsgJ0/OeArrdASQp59+Gn/0R3+EY8eOueweVdAA3EvOF5EvLQOZVJq0aEmjUPFSCft1BbR0eT5jDPr9vqNCeC7N0AHg9uHnejx+z4AtFSJ5eHoJy8vLmE6n2LZtG4AkAPvBD34Qd911F+6//34AcCBE61jngJw8MG/roZaynyFWq9VcbQOzhIbDoQPbfr+PcrnsigMZuymVSqhWq25e+I/B6Gq1ilqthl6v5wCFoLKwsIB2u+0AfmFhwV0/u+gSnHwKS/8mxaXeVq1W26Ac+XxXq1Vs377dKXXWfdDzJHjy3ozHY/d8aDxECx2ZRKDeDp8PNRb4GXtyqTdCYNQ06UajgQ984AO44oor/juv0aaSV6OfPMkB5CTLww8/jI9+9KPO0iwUCjjvvPMcIDDDptvtolAoON7cWovRaOSUGQOxtCSpbKlkaXmqBUkQUM9BFbDy7uptqBeiBWpUCEpjEbyAeSowx8seT81mE71ezynYQ4cOAYDzAqy1ztpWK59KbjPOXjOYOOZKpYKFhQWXTVar1VAsFlEoFNBut9FoNFxr9F6v52IdWutCmpAemtKDURQ5IB6Px9i2bZs7V7lcRqVScddAKg2YJyjwevReGGNSylvjHkofct8wDFEul1Gr1VyLkjAM0e/3UavVMB6Psba25pIsyuUyxuMx+v2+u2/0iDTOZW3SLFKfMY1raR0JADcvtVoNjUYDKysrjmYtl8suSysIAvT7fbz73e/Grbfe+opXjisdmMurK2d8DCSLRz8VMhwO8Td/8zf45je/6RQRFfTq6ioWFhbQ7XadNxKGITqdjsvLJyevFjGVpFqSPpDwp/LXVErcni+b9nTic6F0EbfzeXAKrV8FKqWXqNh6vR46nQ6m06lLO6ZiLpVKjjpS8FBPSs+j39PaVSqO/D+vd21tzSlbUk3aCoTJBPxb4xMEJAbo1bqmd7KysuLGxzliVhg9NDY0VAXMOVWrXn/340L0Igi2BPb19XW3hggpSs6j3kteq1JM9Kb0ftKz9e+tGg0caxzHmEwmzqtj7Gt9fR1xHKPZbLp7ViwW8elPfxrPPfcc3vnOd7pgey5nrmxJD0SVz6mSyWSCj33sY3j44YcBpLuzAnCpmQBSipoKl4FQ8uh+Sq6fpUOpVCopukmVhyovpaWo2LRgTuMbmiWklp6CjnorVLIKegQUBrlprXMOer3eBsDL8jr0nFozAcxpDI6xUqm4IDcVr56XoMCgP61zAiFBudlsYjwepwLPzP6iF0MPotVqOUVPWqlUKrnEBs280tbtvJeksehR8j7wGjmnvL7t27cjDEOXgTWZTFCtVtHtdp1HR6+13++nKC29t+rVcb50OxoknGc+pxxftVrFwsKC67tFY4HJC8Vi0SUixHGMPXv24K1vfStuuummV2xRrDwOcnLkjKewgFObyjuZTPCnf/qn+MY3vpGiVpTaIQgwHZJKWy1bFgQyEA7MgUhpKf2OCpreC5WIggWPQYXAbCPGGmjRa+qvenUal+D26uXwmPyc/wiavNZWq+WUplY9+56WZiDx/JrG6xsMSqc1Gg0Xi6CXQeudypqKmjQL54uAUa/XsbCw4L4vlUpYW1tz6b0MzGt1Oz0B/s2UawU93gOCrdKOSh/pMang6b3V63W0Wi0X82ASgc7VZDJBp9NJxcz8OIV/f2no8FiMc/neip0lcwBwRZcE1E6nAwBoNptuXz7LzCK88sor8cEPfvAVoZ9yADk5csZTWKdaDhw4gHvuuSdl1dHaVC6Zqa8MPKslqgoUmFv/WkzmAxMVP61XPxhNUToCmNNTCi56DvWOuL0WG+p63X5WkQblNWgcxzHW19c3HBtIUyT6u4qCLzBvBqjeSBzHTnEq4DFjiUqyUqlgfX3dXRfvF68njuMU7cY5YJxB5w9Aqu+Ugqt6keqVKfWlBaE8Hj0h9Rp5jDiO3QJX6imSGqRxos+Vxl+UyuR9JMjSY7bWusWqlE5khh2fp3a7jZ07d7pxLi0t4ejRoy4OVC6XAcAlKwDAU089hX/913/F29/+9pzOOgMlB5ATlNXVVXz84x9PxSPUkgbmFMl5552H9fV194KTb1cLHEAKdNRSZO8ndlZVz4HZWwBSx1IQo/KikqbiU+9NrXu1agkcSpVxe+6j9QQMBgNJ4JxBXV+pKU3mg4gCWBzHLuOoUqlg27ZtLr6iSk1Bi5lC9HZ4HAKZMUkm2Gg0cu1NCETT6RSLi4uujqRaraY6+lL50svwYzg6ls3+5jz6z4saERR6JvTe+N36+rq7f8yc4vGZHeevQcLf9bh8buld8HdmASqdp/fx2LFjrsaoXC47WmtxcdEBJIGex/jnf/5n7Ny5E9dff/2Jv3C5nNaSA8jLlDiOsW/fPnzsYx/D8vJyShHoNhRmzPT7/ZRypxJXBQ/AUUxMzcyiozQ2QE4cyI4bMHDPvwlM/Fw9EB5DFaJSHz4Fwu2ViuFn3IYFcKyB4dj842jcx/+OIEbQIBe/uLjoMoE07gDA0YOcU36vQXctrKTlzhoSAM57oaU9nU5T4LQZLcR76c8tf9Jr0GtX0NbjsmWKtdYVOCo1pfExKm7ScgQ6NmckCPAe8B+pM2utixWRhuKxFUjiOHZxFsbwhsMhKpWKGwMz2dQIGY1G2Lt3L6699tqchjrDJAeQlyHWWnz+85/HP/3TP6Ua7vkuuVra9BCoxBjk1cAqFSstSVqcwJxy0HMxpZaitJfGPPzvODbN0uJxfW7aBxX/c71GUke8Js186vV6TvH5Y/A7ACvAqgdF74s0DamSMAzRbDYdIGu6KucZQCo12b8Wzpk2IWTgGoBLr9aAsnoQPgge729j5otFqdflx/F8QOJcq4emAMiqeDZCrFQq7jpZX8LMP44LmK+SyGeQz0C323Vzos+HelF6fTyO3udqtQoAqcxBADh8+DCWl5dx7rnnIpczR3IAeRnS7XZx9913pyxEiioKYG5Jjsdj12eJRW3MmOF+VCBsB8L1rqkw2GaDf/MYBAq+oKS2fGXtB2j5ua+kVJn71+MrDc3qIXiQslpZWXEKnTEHbqvzpsFj34OhgmYgmVlWSrORUmFGGhWY0ko8D9uWK23I/RRQG41GKotI54XiZzRlzZF+x2MzqK/3MSv+o/QeDQUaHRob4dzR8yKI0HDZtm0b1tfXMR6PXa8r9gqjZ0zjhs8jMA98+wkTfKZ9b4tj5xiU5iQdRmDr9Xr49re/jXe+8534cSXrnuRyamXLAkiWsnu15JlnnsGRI0c2pJFSlIri56RvyC1rEaBy6I1GwxUZ0mpTK1c9C1VA/Fv5c+2ppFaiBm6zlCP/9r0BPRbPkeU5UJFxvQ3/OiisBidY6jzouKg8GQPSeebY6OVozQO3UU9Cg/08vsaCCK5MM97smcqipCh6r1QIHDpXvpehCltpPAIHixbVO+PvPO50OsVgMHCpyzQyWBOj96lUKrmFpmh48Jr8bsf+nPM4nDdW5LfbbVdA2uv1UqnK9JTK5TLuv/9+3H777ajX65lz/FKSA8jpJ3lp53GE1NNXvvKVDdSKAgGVnnYz1TgHAMcnqzKmBT8ej1GtVlNBTSBde5FFmel2PJdm/vA7XouvHHRfVUoUzSDyuXMqLnLcDO6qR8TxUBk2m000m03XPl2TEFS0Yy95faV72HGWdTRK4fE+tVotNBqNVCIBr5M1H0qx6LwoUGicRJW2zh1/V5BR8NC55k/NyNJ4mq5XXqvV3DXyOjhn3F89G6aFHz16FO1228Uo6Nk2m03UajUHVhwnRWMsnHcFO+1IQK+53++7OpsoilCtVl1MBIAr0uz1ejh69Cj+7u/+LuX15LK1JfdANhFrLT73uc/hy1/+MlZWVjZNN9XUSgCualdfPOXlVckwTZUZTFTKvjWtPa0UrGjdMVbgW/w8P8/Lnwpyqhx1O78NBj/Xc1BpqRKkRc3vGSdZWFhw1BNTSPm9r5h17FnzxvERAKgEde7Ys8lvcOjfY/85yqIo/aC578X5xoLGqXyPUD29LKNEr/XYsWOp81Oo/Env6fOhCQVKQSnosN1/GIYueO4bFzweW+X71Fa5XMZgMEC/34e11rVc4eJUSsmqd/Otb30Lu3fvxs/93M/l3sQZIFsaQF5Nueuuu/DpT386RXP4WUSqgPid0iVKa/h0AQD38mZZuHo+YJ6lxBRWpdHUkvbFT78lAKkSU+Wg52VWjlI7WUFkVSz0LHheViHzOIPBwCkleik+/cffqRz9ueY1EzT7/b67BmYfkd5S5cpxZIGGTw2q0uczwPtM8bfRMev9IcBq3U4Yhq7TL9uDrK6uppQ/7xWrxnmNpAG5rV/xroYFAFdoGEURtm/f7qguUk2a4sv5UA92MBikClYBpOjD6XTqKFgArv+bZg8y+QQAPvOZz6DdbuNnfuZn0Gq1XnZm1qtpMOby48mWBZBXU+I4xoMPPph6mTWoSeWgwWwqEE0PpbLSAjEFFqV4uJ/WXqgCUYqGwU4AKYDh2H2+2k9XJRdOpUMvwR8bRfnyLC7eD+BzuVQWopXLZVSrVYRh6OiM4XDoUmOV1tM4DwvSFKD8eAMBiJ/rOiHqffDe+Z6kXo/vXanC0qpu/V6vX7fVe0IhRamKm/+2b9+OVqvlmj3y2anX6yn6kM+YPlt6v5jRp94Yr3c4HLoKe/+5VE9avQbGU9gCn9fZ6XRcXM+YJK507Nix1HotNBRYPc9MtCiKsHfvXvzLv/wLbrnlFrztbW/DFVdckXskW1ByAMmQTqeD/fv3uxdPayq09sFPzQWQstIUaFQhqeKhIlFLXAPDpKtIO+j5lb/3vSEqFs1g0tRKejJhGDpFToXvW+N+Fb0qLj/GMplMMBwOXRopl1xlJ2Jeux+D0LFzbuM4dutRaMsNHYN6TZwLbdhIUYpHPTzOFUU9TrWgNYVYAU3nmdehljnre+h1UGkzTRiAa6ypxZj8jveJ51DDgTETZvcFQeB6VdVqNWf46Jx3Oh0H7ur1ct45J7wfWkOkzSNpyOh9YLsVHh9IUnx1OxbSslvyvn37cPDgQbz73e/G6173uhxEtpjkACJircWTTz6JP/7jP3ZWP+MSqtTr9Trq9XqKcqjVao4PVuWkAVKtCldKCUjTBxwLqQUCBsFKKShNT+U/Ao2eQ4HMz+oyxqSaDQJzRapUiR6DwWuOhUqdylYL2ggsDAIzZuMrdE3hZYopx+EDCRW41sqoJ5PlZfB8qlR5fgVX9XD0GPrT/92nfbgfu/bSEFGLn0Fqgh5pH6bAxnHsgtQEC46b6dPaG00VNeeSbdiHw6HLlmIMg4Cj1857zvNR9BnkfPm0Ip8PLXwk4DIjjFlgvJ+rq6swxmDv3r246qqr8kLDLSY5gCBRlvfffz+++tWv4tlnn0W73XYvLYFDM1TieF7nwfRP33IH5iDAF54vlE8vaUUwwYcvOmkIDTorWPhBWeXKszKugI1rVVDx+OPyg+gaP1F+n6CQRX8obaRKisfSPk6qdHQuOH/+Nel1quWq4ECFpNY158IHGR4zi97Sjrl6nCxKjCsb6me0+LU1is4rQZbzymvTtFzOJ+eb5yLAcs6Hw2GqsSePycaQwHyFR/YJ82kwBUx9BtiHjd4IP9ekC86PFpnyeKurq+h2uy47i/f9qaeeQq/XQ7PZzHhDczld5awHkIMHD+JDH/qQaw2iL7laZFRSYThvre3n7VPBA+kXL8sb4cvIbCqemwp5MwWnIOUrMSDNu/uAwf013ZZ0kdYaqEejCld/155eVBoKkPSOeH5N/aVoai6381fFU26e1+mDiPap4jVqfMq/h36PLyphxmn6/b4LVOs6IqRt/Hvg3yf1aPQ54PYK1HqfqIj5PPAzzeyjh0Iaiasx8h6wErzf77umkuVyGa1Wy42Na56XSiWXjtvr9TYUFuraInpP2blXKS7OsQ+IcRy75Y95/awV0RRkjjeXrSVbGkDUfT4RsTZpu/GlL30Jn//851Ory1EJsbraWutWEKTFphkoFOWNCRRqQSs3rlQTlaRazKQ7lBoC0umhqsxVQfoBVz22DzKacusDlQ9gCphxHDvqQ3l2xi18oNTxcx33LKVLi5txDiC9BogqXJ9K4b3jcQgcvrcFzFOUaclT0ZGS4/XW63VXxc7WNFxISUFF54z3gjSUBvKpMDmXPLZSnqqYeUx6MwQ6Ywyq1WoqCM8ldpUSIwVmbdJtlwaOXjONJVasq5fNefeNEs61ehd+EgfnWeM2fAYIkPq+WGvx0EMP4Y477jhuHESfm1xOvWxpAPlxpd/v4+Mf/zgeffTRlIVLhcNsEQavoyhyRVij0Qj1et2lQfp1DGr9qotPRcjvqPSyaCFrretmqy+or+Qpek4NuGaBgp8yq1k72jWY+/pKXseitEW9Xk9x6txXj0Wvi9XVpHo495pBpZ6Fegu0kHV8VGrcX70iP+7EcWtDRT0/jQQqR9ZAjEajDXRkEASpYLjOE++rjoPjVeBllIYnrwAAIABJREFUAN0HSgVJ3l+NpTCO4QMg7w8NEy7pS8+FsReCi1KDvK/qTaj3xOfGvydKx/GZ0ueDbU4I2Iyt8Pp5zBdffPEl390cQE4vOesAxFqLBx98EA899JB7WdRSpNvOBYIAOEVAwCDNxapxxhB4fOXg1crzeWW+fL6SpcLRFxWYBzLVWlVA0hdLlYF/XJ6TlqCCAq1PXWBIq+xVAVLZU1GpVUlFofUvAFKUB2kjppbyGhXIOGcKBFmi9JgqOaXDOA/qZShNBswbCmorFP5kKiuQpCprGiy38c/LeaJx4lve2rZF77kek5lWBGouFUuA43OkfdL0eWdQm9QXxxFFkVPuukIh51DvuW9QqIeihknWc6v0H+edgFapVJxHSiYgl60jWxpAfhwKK4oifO5zn0tx5Kpc6HZba10jPo1LcDsFFfUwVCGpZ6CWqVqkFAUeVUyqrI/nFWR5J743ocFxACkAoCJSOozn0rgGAEeZsPp4MBhgfX3dKRzux8Cu3/eKP6msqeQI5lROfuBc58gHbH0edBsCro7L7xnGmAiQABy711arVUdlAnDWPrvVcnw+Vcd7rIFp9cqU7lFPhRlbPJdPvbGXmD4DpP1o1fNnrVbD+vr6hmeBBkStVnOeZxRFLouQ16jPJ/flsZXq0oxAXs9mqeMEEdJ7g8EAjUbDPSds55PL1pEtDyAnKsvLyzh06FDmsXyao91upxQVrTJahdpHSPliWqsUrbnQVE4/QM39C4VCitpRkFMvgH/znMq3awaZ0iBqoWrsYTqdOh7cr2ymAlALmuuWDIfDVEquziV7fOlaFFRgWpRYLBadBcxArm/h6vxyf5+mygIMNQ70mfGtap0bgggpnqWlJUcZDQYDRFHkFrvi/kqTafKEAoAaGBpP4nf0aLMKIAuFAhqNRgo4/GPyvsfxvEkn02QLhQJWV1dThhEBn/NHQGg0GlhdXXXH07laXFzE6upqao59ylS9kqxECU0aWV9fR61Ww3Q6xZNPPvmSFNWJGoy5vLqypQHkx5GHH354Q3xAPRl9eKkUjTGuOC6KkoZx5HOpPDToqV1IAbiMFAAbzg3AWWRUKEqV6AuoXola0rR2dTW6YrGIwWCwgdJQq5hjM2beoZYKXAFV+XWlOqbTqQNRn4ZTS1TjRAQebs85UHCm4lVPgQCclRygdSIKxPQudK59ikWz7XygZVzlhRde2GBI+O0/9Jr4TOg16rOk+2igX40BbmdtEivrdruoVqvOA1EhgNAjKpVKGAwG7jk9evRoapXFbreLRqPh7iWpMAI5MM9uo6Kn0DvjeRnD0DiQPme+0aLAwmtkfciLL76IlZUVbN++fcM15nJ6ylnXjVcVqCorilIgmmkyGo3Q6XSchT6dTl12TKvVcg0DNcCp60BkZUNxDBqT8Cu0lQ6j9c6iMaZj0qKt1+uuVXe9XseOHTtSXWGz6DD9W/PylUriuFkDQEuZY/UDrcAciJkezOP5lCEVMnl+jcX490W9EuX7mX7LuVZvRGMQ/Kfzqda3GhGa9KCFpNwm63icN/7zKUQdD/fxz8deXlrrwefv2LFjGAwGznvgmDh238Ph3CwtLTnKiJ7O+vr6hvGFYej6ZKmhwvsxHo9dvEJT3bkv58qfL/VM+MyrkcTvrLX4+te/fpy3N5fTTc46D+R73/ueC5T7LxAwz8ZSUYqJNAZ5Z74EtJr0pdHsJip+WtM8LhU3rUDNyOE2PheuY1IaiC/tdDpNLbtLWkyVHJUnx0NFpAsD0drXlfQ4Dlr8au37wKhKUQsttQ5FvQotmFMr3QcPXjsBTT0c3Ue9QKW2NAah6b9Umr7yVM9GAT3LW83yNnxvy99P76mvcNVDYdt8Bp8JBnxmtdaCn8Vx7NbpYJyJmXAsUqRnqZlimuKtMR4FUY37EfgHg0EKYHwPTY0HjodeLONAuWwdOesA5MCBAxviCfoSqwJhewnNEFpbW3P7xnHsGgcWCgWXMulTIrQK1aXnuXU7vjy+MvYtWB27Khe/ulmru7kPAQFIez+akaQ0j8ZGNqNldJw+ZabKTMGJikvTOP1r1yAtz6VFgEy3XlhYAJCkZ7NGR6+Fx6IwY4m1Nv41ca75U+k4Xp+fFabUFc+vBXd6H/3feV79TO8jt4+iCKurq1hYWEAQBG5tD46V56UXoGm7unpjs9lMtcD3vU+ej3Ok80kvT8en49eMvc3id3xm1diaTCZoNBr4xV/8ReSydeSsAxAqDSoGxg3UIwGSl5HrGlDZbd++Hb1ez3kg9C5IV+lntHKp9LUJII+vwMTzazU1xfc+lDrxqQ7dRy1HpTd4DC3oOh7VptlV7KHEJVEZD8ji83Vf0noEOcZC1KLX9huayUMPiBY2M8bYsFFBhQqK+6sVrPPDfXQu1dth4oNazH59hAaSOb/0bnmv1QvRefED/TyvD8iqpKnoWcxIyslai8FgsMFoUU+NtS3tdtt9VyqV0Ol0XNICn1W9Bg2083lRD5rzxnHzfWKdj47dp7I4TgL6b/7mb6YWVNtMssA2l1MjZx2ALC4u4vnnn3cPr7U2lXWiL6AWphUKBaysrKBcLmNpaQmrq6up75nG6lvmjBnwJQU2riOiXglfYn7nZ7FQqMSoSLXQTUEqS3FREehCVvS0SOvw3PSKfEucc6UUVLVaxXA4dP2WfGWg9TAKNAQHX9HyHlB50aqnMue183sGgdUSz1I2HDOvUT1BBVoGmalUec28Fo2h6b1Vik4VpKbo6vWpB8G51jESCDh3TCVeXl5GpVJxwMzaJdKLDPSzGJLPcb/fd0H1QqHgOgjwGpTW01YuWUWPKrxuLhmgxaBKj2V5XDfccANuuOGGHBi2mGx5APEpqJeSVqsFYG6NUnFp2qta3voicz9WLHe73RRN4lvUSrn4Vi6Dylph7v/0g63KNVNo/anHAcA1KvTjAFS86hkASI1Vz6tV1wQaYF5TonUytVrNVelr8ZrSeDy2ZoxpMFgVs4Ke3hNy5ZVKxYGVVtJr0gCVo86pUi18BujVcP79DDD13vSe6D3Va+GYSGPxGjT7SJM51Krnd0rtcTv+rfVHxWIxtXYKlTzvN+edPbHW1tbcPdG4m9J0Sj3Ri+Fc8Lr4vdJaSu0xvsFYh9J8vFYC/+23374h9pjL6S9bHkBOVPRlJjjQ4vK5ar5IfOD1RfApF1pUfGH5snB/Vcq6j9JWCg46Fv939T4YRFbO3s8Aygro+plTCp5UAD6Y0NLXOhFSWECywmKtVnON+xQktbsxs9c0mM1zqGLkZ6r89fPJZOKyzjg2AglTkVkYp54CFSuvW5sGAkglDWTFKvznSQFevSg/i4nC4DXBX69LPQ0/IYPXwnMx7qUZYVq0yWvR7DZ60Ay6a7Ghxjs4Fs0Q5HOjc6PPmAKpvhM0ZvxnnPN9zjnnnNBaIDmFdfrIlgeQE/FAut0uvvvd77oXQTl75fn12MDGDrjWWpe77u9DxaD8sdJTwMb8f4KIpoTyp3olvkKjYqb4WS+0nBUsfK+G4gMOP4uiyJ2DwEQFHUWRm4PpdIq1tTX0ej1UKhXUajVn/TPFGUCqdTgVDo+hdA7Pr3SIAgnrFqjwqKAYo9FYgi6fS6NAPTFtUcN7p1y/0i86d7wG3gs/iYHPlV9LoQqXx8+6vxwLgVAzo/Q47XYbw+HQZWZxHJPJxK0nwuwr0lBsicJ7QMpOaTl9DvWecMzlchmlUimV/eV7anwO/WJT3is++y8n9pHL6SdbHkBORP78z/98w6JJFH1hfFBQJaEcuCo03ZeZWaPRCO12ewM15HsL3E+Vp9IbHJ9vlVPB8cXn9r41qFSIWpAqqhw11qFWNYOinAufluL+pJmoZNg0kYFcKn21UpWa4Xj8Meu4lSIh+Cq9xW25L0GF18JteSxV1JxH/7p0rvQe+hSUJipoQD8rM49/q2JVT5DXS6+FRgPrMXjdjGtwPgjIzMLyvb0gCNz2nMd6vY52u+36mhGg1TtSg6VQKKDZbGJ5eTmVFq7vlVKgSoVp0sqxY8ewf//+PAayBeWsAZAXX3wRDzzwAIB5W3StnlXFpMqHn3EbKk6+iFQKrODmy1wqldBsNmGtdUVbAFzbBmDeOJBUj9JHPvetGUZUrqPRyNFBPiXlKzV+pgo7i6ahqGJUWkO5bD/7SwFWK7VZc0CvjYF50htKlykFyG1U6fJc9BwYMyG1pvSYn4DAOeL9p6ehAK/zrMrWBzwKLWhNMvAD4FT0ehytXVGvwb9efsbYhnoTumIlgYrZWOrR8rw0AJRO4rhYoKip3+r5+M8m77XW9+j1+l1+/Vgfx8J4yte+9jVcc801qfZAm8nLZRxyefXlrACQ6XSKT3ziE26ltiyqgC+/0g8+/aOpob6ioUVrbVLPceTIEUe16AvJF4cvGwPBWsjlKyo/mFoul1OZV35sQzl4pSh8T4k/9ZopPBavn3y7Um5KFfkWfBiGrlqe7S80/kHxlSi/Y2xClS7Hpd8pLaOeGC1ojpU9rNQ44P3Ua1dqywctNTLUY/AD4xrE1+dIr1PnmmvSq7epnoye358nHTfHpb3CCNL0zDiudrsNIGlNQmXvZ8L5zwl/Epzb7bZriKlt/DkWvhPqzeg7yXcxiiI8/fTT6PV6LwtAcjl95KwAkP379+O73/2uUxqkUZQ+YEUvMKcelAKiMlDrje68z2VrQN7nt2kh8rusIOpmCp3jazQabnlSFi9S9MX3A+pZMRVV4DyHb40zg8dfi0OVgh7D91DYQmMzr07nWpW8cv4KOjzWZDJxIMrPVeFrjQ95doKa3lO9B/xb50qTECgKQKr4Faz92JMCu39/1UjgnCrdx+tjJ2R/rn2wAeY1ODyGehLcT71BGjcMxPOaNS1ZfxIk+C5MJpMNLdvVy9d3jHPEd6VaraLRaCCXrSVbHkCy6BdfHn/8cfcC8cHVlEhg41oOVF5K2Rhj0Gg0UkV/Srmom6/Wvp6DLx2D7KqIVIlsZvUaY1zq6mAwcMfOshipxLKUi38eCufGP542buTfAJziULDJujeqfPkdFa5a5Eob+Z6ggp1SKD6w8brZKdgYk6ofUS/Jt7g1lkQl6HtrvBfq+SlQq0ebBRwsUNXnQAtIFfD1WeXP8XiciqcoMCj4KWVHIND5V/Chcg+CwFWtcy4VGHXu+WxlAZ6Csj7jmplH+jCOYzSbzRNK4/WpxFxOjWx5AHk5QgqFL4LSRUA6gwZA6gHnS0sLvN/vpzJLGChWC91P7VW6S18wVVxUKFp/QPGt78lkgk6nkwpqU5RGIIXDa/KVJBWIL1mfK22joMJ5pLKsVquo1+vo9/vo9/spCzrLOuc8aBqteke6r86nX5uhSkvvI3+y1kHHrZ4mFaM/5z6Npcqdx9eaCGMMplEEWJs6vnqnfmxAvS6el4qVVjrvu86jBsYVTNSL9IFDDRsdm2a1MYai4md/8fjT6dS1qOH6KaxC53UoiLCo1ve+BoMBRqMRarWa/zjmchrLWQEg55xzzgZeWpWJBiPVKgaQUvx8kdmyRHPvdQVD3wKksmCjORatkRILw3kXVFrMm9E9PnXgB89VwWnlM7/zPS1Kljem/7KOrUqA59DCwqz4hSpk/VsBhNek1r3SOzwez8GxqWfAOhC9bgVyKjSCEa9BKRqdex2/7wXZQgMvmAvwXOE6LKCN0uQYEE0QBRUAMWpxGwVMcG70XxuuUZ9FvWZ9BvjsqUFDa943QnQu/PEr4OoY/Llg4gNBjGPh7+rV6vPEZ5IgQWGhplK+vN+sou90OjmAbEE5IwDEt9hV4jjG448/jslksqFmYrOXTBvC8TM2FeQLREWl+2ZlUvFv5tkrJaGdR2u1WqrdCa8rK9NJA9vaFFCvQa15pWKoFDhenTsdm5+ey3EA6WpjDdRSyaj1mqXEfQXHufT7gPngoBQNLWUuPZsFTD4IEMh5TvU81FP099Hzq3K31iJGgMfNG/FC8UoAwErhYthwCsQTwFrAxgAMjAGuH9+N86ZPbaDnOE/8p16KBuj9eJPOk16vHkMBVwGU22s3Y62PYcZcFt3L50GpWwDueS6Xy27tEfWkeCyf1mN34TyAvvXkjACQ40kQBG79aooqM1pKGhDmy0Wrjy+GVhD79IEGUzWoqmtn8EX3aSzm6pdKJdcChIpNFT7PS2VNikqbIvrWK5UILUOlUzhG/UmhkvFpHgApi10tf46LKbZAduM8n2ZSOon785hUaJx7rYLXanO9Dt8rU8s5y9BQAPQVsU9h8ThjU8G/V38BvWAbYGaGSaEExDGMCYBiDTAhbDQFbAQY4HH7NpwzeQZmln7Me8qfeh4aOwqwagRwLOpRKdjx/viGhV6HPjP6bFYqFWf0cBv202LarlJmFI6BhhKfuTiOHVCRilOPU4PruWwtOSMA5HgeCADs3LnTVSP7HoMqWv0dwIYX1ae//O1Vifluv9Yc+LEQtf50fH5glv8IbPV6HcViEb1ez3kjSjlUKpVU+qqek+NXCcMQ1WrVZXbpdagHoABKRcPj03r1AVOpD6VSNiukVC9IqRUFFfWgFMA5bl+x8hq19oTb67zxunz6Ssf5o/BK9Mz5sxs1S2aIAIuZQo0NDBIwsQiAIEQUVPCt6v/ADd3PIojT68f7z7L/LPl0pe81Z32WlYqsz5MmRNAwGo1G6Ha7qVb0/C6LtuR94QJRvkdCD5nC+8f7RVp3z549mastbiYK9LmcOjkrViTcsWMHrLUpq86nolR8MNLt+KKodU96ihk1XCmQKaPcRj0UVVikA7Q1Cj0MABuUB61lrtsdx7FLg9Tt6H0xuGntvNeUKl39u1QqoVqtut5VHIvSPDpHqrR5PNYbcF+lhihKySil4YOxFl2qla5UoQIjExv4OYstuY/WiuizoECpVB3H6m9zzJwLwAAmAMIZ9TIdA3YKRGMgGsMihrUREI9h4xiwFp3CeThSuSY15/6zxvvtzxvvgxYKqsL2PTG/Y7ACpHq102myWiHXUxkMBuh2u+7Zmk6nWF9fx3A4xHA4dEYJj5XlvfGcfAd0/PTM6YWNx2M88cQT+M53vnNcQ1Dl5W6Xy6srZ4QH8lKyc+fOVKvzzXh4YGN6q3LfQPLCMU9eFYxauT6t5cc29Fz64lHhs92Kb0lTKTIeE0WRW5eDNJha5VEUoV6vO6Xkez16vcC80I/X+VLelm/d60+tvFbReaGXwfP5CpzUlY7d307H59dN+M0ulWLRWp2s+67xB/WYAABhFWvlXYANZvRUCBSqSdwDSOIe8QSAnf9tpkChjHCyjsb4kBsnlakCc5YnpJ8pbcT5Z1dbTekNgsB16dV5o6jX6CcZqNFTrVbdc6yGjt4nBs7p6TPwr5QlzwHMO13z2sbjMb7zne/gpptuQi5bR84KD+T6669Hq9VKWZ9qLWnwTpWU76GoglQumJ9lxUGy+HQg7dUo0Gzbti1Vra7nVCub/Z70fJoyqTESbXPOqucsz8Bai36/v2EdDQ0eq3AbHYd6ZFm0UNYxqQB9itGnzfT4CuAUbqdxKk0g4DVrM0gqUXqMDPwe794+U7wR62gBnA9j4WbGhEBQBIJC8s+EyT9rgXiCOKzgh9WbMAnqKcWqP/k7r9Ofe713el3aul9rlbSlvoofB9HPed30qBkH0V5bFH3m6OlzHZwsylBXgmQKPAAsLS0hl60lZ4UHMhgMUnUe5OJpYbKnkgZv1T1X65/7+55Dlgfj87Tq3mtwWumWyWSCxcVFdDqdFF0ThvO25Jqey+C1tUk1b7fb3TAWn2Lg6onqhfCfdpRVgPC3I8DxelToWYzHY5dEoICo9ImeR8/le3h+y3sqPx0r74N+nkUBqXfh15/omDgXOl4UqvhBeNUsu8oCMIAFbDydA0pYAqb9BDRgYMISLAww6cKaEC+UrwWsxbWDf0EYptO0dcwKrvocbgbKmqWl7UmYEeXPtXqZfEb4bmgartKFPg3sj13H4L8rFD6vfAZ5Tt0vl60hZ4QH8lIPnW+ZUSFpVpLfBZb/FGgYF6BS5L58YX1qzKe29AVWGofbRlGEXq+HQqHgUob1OH4MgPszoM58e4rSGcPh0LXP9rO51IL0s654Hq041kC+KiJ+p+LTd5x3nlvTf5XW4XVre3xVShpcz/L+1CPyPR8do2/hu1jXZIqJqWA9WEJsSohNEZE1+M/wJvSDJkxYBhAkQGKj5F8cA9EQmPST7+JpEv+YDoFpL/FE4gnsdATSW0pB+XUd+oypsaHPktJVvAZmwSlQqmfLZ0OBxH8GsuJWGmPxiyQ5t/q30rd+AoACOWV1dXWDl3Q8OZFtc3l15KzwQEqlkkuR9RWxvghAOtURmL8oyvf761aQzwXSGWE+PcSfuo2ei1W9XNOCQnoii0aiB0WFqZYj+275PDctWvLWpCj8gKuKggjHpwqIY1GqToFAvQYFZz/wqz85Hu7je19+CxCOgcCi86wpx+oxcsElpSkja/BI8e04WngNbGxRwASFaIA4CDEOW4CNYGMzq/OIkqB5UEyC6abAG5ME2K1NqKx4mvybST1ec9Xqet90ASf1pAgwQLr5Iq/Pr/fISm7g2iqanqvPFO+PtdZ5qUqj8XicQ46Bz6BSf8YYt2SuD3YcI6+X9/DKK69ELltLzhoA2bVrl1uClqJ0Cv8G0u63BlL5N5UX/+ZxdHulI/Tl88Wnh6IowurqqrMIK5UK+v1+Sln7FjObAzINkt9zvXAqD1qWWlVPRcF5oiLYbD4IoPxcPRoqLs4Nr4fiUzM+DZg1d2p5a+8xXntK8YuXojEin5ZkbMSfT55jGrSwWr0OsCEw7WEaFzBFcQYIMRBNgMAAYSH5V6gB0QgwmG2DWeDcJKBh7YzeMoAxqEbHcP7k+7A2RhimFawmDQBzClWvUzs/ZylnNQB4zO3bt8PaZGmBXq8HIO2dZRk1WunvP7N+vIZArMkO1lrX0FK9QwIjt+fzpl53LqdOrLUv+yacERQWcHwaq1Qq4d3vfndKAall7tMG6r6r5asxCFVq+iJQ8StdpePzKR9f9CWOoijVMNG3+HU7Y5IuqkphdTodDIdD91IzS4ZgwpRMVf4+JZJlefKcPs0FIGWx+nSIHpP3QpWeKnx/vhSsfc9OvQp6VAouPhVHSpNgqR6cMQYlM0I1WoOFhXtFCtXEwwgriZdB7yKeFQqGs8A5wuR3M9svKCbfwwIGKNgRbhz8H1SiNqy1GMUhflS43IEw55A/Few5X0wC8IFCnxGdO86LZm/xHugc6jPpJyQQuDi/fqIB77leh2Zu6bPC1F7N1CuXy7j44osz34lcTrrEL/ffWeGBAEkm1s6dO9Fut7G+vr6h6Mkv4tOgLSueVQHyBVZlqVyyBjy1ZTYpJP6dpQT0mGo5c1wcG7/nPvSM+ALreYBkTXcgbXlWq9VEkc3qVSg+wKl3oTSZT+Wpx6BgqbRHGIZulUKlzjQrScFKFZ+Oze8uwO2VNlElSkWmCo7zoRRkiCkadgXrtpUExBOXIvkRJF4EwsLs7wCYjgBrku8o4nEgqMziJElQvWRGyddhCQ9X/i90gnNwaVTE9vgwCkUA0RCVeN1dg3ojfB50zQ8fsLkfU3gVPBWws1KtfY+cgMDMPwKH0o/06BTUOEalzDRYr88uAFx11VU455xzcCKSRbXmcnLljAEQ34vIkquuugr33HPPBms6K86hFp3PwasLTpqG/LLyyv7L6f+t58j6XAPEuo1amEzVLZfLaDabroaESlmBTl9YvS7t+6VzwONEUeRakFMB8bgMzPqUFM/lt7pQAKYwOUEVkN4DTRbgsZWu4rE1acBPUtCqafZFU4tZ6xUMLKJZ9bgJq7BBAEwnACIkgXPAxNOZd2Fhg8I8mA4zq0I3QBDO4iWxqw2x8QTDKARsgO9VfxrtwnkAAjxV/Sk8FU+BQgUmGuDa4VexffKMuyZNeODf/nOh9Fa5XEYURahWq6nFtnwDyKcn9f5p8giAVPKIghU9In6mYOXTakqj8t4WCgW88Y1vzMFgC8oZAyAvRy699FLcfffdANJppcDcjff7O3EbDcqyEI2go0Fkiv+i8jxZlJkPDKo41TPiC0hRL4cvbLVaTdV90FpkdTiXl+VSosCcKuEx/THRi+L5eM3qOWi2mgKAnwXVaDTQ6/WcovNXqtOMI55fFZvv1egYgTlgKVjrvtofSqk3fta3NTxjrsNycBEQT2GjTkJbBRHAvlbWwsLCmABAAIMA1l134t3baAJEFghLMEEIG1nAhIhMBf9ZvR2xKaAdzlqhBCEwAyxEY9ighMfLP4NyuIJFexStYh8trGBX/Ky7fvUAeM8419Za11ONXQW42BPBhR4Fr117VenzzvnhOZjJp8koGqPxuxBovzau416v191nhUIBS0tLuPnmm08YQF7KYMzl1ZezCkD8tTZoLamostI0X81T54tDBaqBQT2GWsE+z+xbjlluvVqMSif4AVQFq2Kx6GgLrqHNrDFWCfsWKDPUeE4NgPN6dczqvVG4vT+n6lEEQeASArIy4TSzR+kmnUvNJvPn1gcDjXPp5zpmIFG807CB58xVeL5wLUbFc2DjWVxjOgTG60CxmtBZ1jpPw8YRzIzSMtYmtSDBrO9TACRtTaawxiRUlzWAjbEaXpjESIIwAaV4ksRSTDAvQLQxRsUdOBI1ccQUEIYBfn7y17DxPBuPc6VGD6+JnrLSr7xWjXFxDnXuNKNLKTT1MLkdnxl/7vm9n07MY+pzsmvXrryN+xaVswpAdu3ahUaj4Rq4+QqcDzVfKLZsKBaLjvvVXH3f2uUL5Vu5m3kY+plP2/hUDrejpUjrkYpTuWnSAgQNAiGVd6vVcv2MNC4BpL0RrpWiYKcBcfUUfPrPvy5SSDw2gS2rgMyYeYBXYyOb8fXqiSl4kXP3x+OD3Cho4EDxTThUvzXxLGJ6RBamWIWdjoF47iXBJPENEwQq2TFbAAAgAElEQVSwjG3wMxsDYSmp8ohjycyys6r0GUgAc9orKCOJSZoEsEw42y8ECmWgUEVkAkTTIgpmDurqffrPEj1kZnX5IKoGhSY++EaPxtiUguKx/OeWVKe/tK16KGzfzvN2u93cm9iiclZkYVGuvfZa3HjjjakFnXzFRb6XLx8AByTMHFIrDICLgWjGy2YBad/j2QxoNKCsfwMbi/WUclCuv1AopFaJ42f8R56cgMpWJ7q/AobvMRAQtG2GUmCqmJj9RIWjwORTUaqg/FYbaj37QM2fVIRaO6HzzXMEQYB1s4RvV/8HDhWugI0nMHGi1A2QgAEMgBgwAUwwy66axTSsnbUwMQYsDLQAYGOYsDRrZTKjuQgeYSnJ4gorSfpvSPCI5+BiZum/0TgBnnEP4bQLOx07a57Aqh6pArjvjbCmg0aQ0pxaXa7PqXrqfvNGzdAKgiTdnJQoA/xM7WW7Eu5L44VGQrPZ3PBM57I15Ky6a2EY4jd+4zdwyy23oFgsuiZxFCq7RqORUnRMOeRDr2tSUEEVi0W0Wi2nXNmRd7N4h/93Fp/vc/Xq5eiiTVSUvV7P0Vfkl5X79jNhGPxUK5/XolSRpuISoHyvSlt967gJHJxLUhlURlm1BlmJDDyeWsVUZAo6mhmk8aYsrw/G4GDtjegVz4EtLgDTEey0n8Q+7MwAsFGi8OMp7KQLA+tSdA1M0qJkVvdhTJAAio1gp4N0mq8xM+CJADtJ6kai4Sz9twgU67PtAiQZX1aKDy2K0XpqXvjsaexKgXezhA3/fvrxDJ0rfVb4mVJVvsGSVVsTRUnDT7Z15/k1pnbw4EG37HQuW0vOKgABkiDur/7qr+LCCy9MUSXKsw8Gg5Q3waI00gLKy/Ol7fV62L59OyqVSipV0Rflr3len2LRz5Wr5j96DlpRzvVASqUSarWao92osJWv7vf7KWVOoFFajtsqbeHTQxwvlYsWVWr+P4+lSi8rbqHegf7k91kJBf4YswBY+X9a78nnBfTCc5LYRDyCKZQSRV4oJx4DAlib0FCmVIMpNxPACEhFhTAwMMY6xW8BwIQwQQEmKMIU6zD0KoIQM24KYI1JPIuBwCTeR6EyL0IsVBIPpVDBxdiHYjBP2sjKbvITLPyVIaMo6bc2HA7dc+33vMpKptDmnbyX+l4oYCmQcK41K4uGBMGQxtgDDzyQ01hbUM46AAGS9UHe8573uBdRW3trLQPFGJP6XC1gfm+txeHDh9FoNFCv1507v1mQ3j++fyz9XQGG/DLHouu5d7tdBEHg2r3zc98i7PV6Gwr+VHT9DM4PvSuOy88m81Nnub+CiO9RcT+dBx5bV+zTYk1up+BHqxZIr52iHL0umsTPpwgxjsMkCF6ozjKpMItXBIBJqCoTT2BHSV2GCUswhmm7mNFXIZiRBZvUjFhjADuFjceY5WzBFCqzlQolWM7uvbAzamsGYq4QMUTBTHHu5EDqHrHjLZ8xgqNmsXGeOacKMn5cifSiehx6//Re829Suz7Q+8chHawZWuoZx3GM+++/3yVy5LJ15IwCkJcTB6FcffXV+Kmf+ilUKpXU4kmq4PnwK3fMnzwf4ybGGFf17aeZctssmkr/VgtQx8Lf9RrV8mS8otFoII5jDIdDpxBIu3GZUj2m0mIEJsYmqBjozSjn7SsLVVAKygoyWTSUgo9eE4/tN3vUdixK0ShIk+vX8WmcJjUGU8aosA2AAeIIJpomwXLeGovEEwkrcyXP2EYcw9pZijZmHhXiJPMqgYvEe7F2VgMyhY2GMCaECSszgCKVFiRZWgYw1sIEpcRbmdWZXDm8F6VpZ0Omk7U2RQsxnqHxPU1G8IFCEy3Um/PvBf+mB0n6U7tc+32wtD6IiRwaP/Gp3cOHD2P//v0n7IXkXsuplTMKQE5EwjDEr/3ar+Hqq692wT4Vdc3V86Cy5ktHL4C00srKyoaXT6mU472gWeK/cMrvayEj4y70lLiCXL/fx/r6uqv9UNAIgsA1RqxWq6hWq2g2m25lQ4JisVhMpVkq4GmQW70J/VytYk359BW7HsNPYVbOXQFKYzJUoEpLKvWlitUYgwgBJkFt3oZktm6HjWeLRM2oJxtPk5jFuJt01g0CmNICjCnAGMCYYO6BMONq1sbdBdKNgQmKsPEE1k4Aa2f0VwAwjsLK9TBMAuwzECmbEYJg3trd91A1/qOtR7I8TGOMS5TQ7f0+VEGQ7k2mc60ejiZQcFulFcvlsntX9Hv14o1J6ow+9alPpSi1XE5/OWsBBEhogF//9V/H7t27Uw85kFb6qoCUqlELmO43l/9UL0YtdYoqxqwYCK043Z5UGuMIVAQ6hk6nk2ohwYwbfzEtAG7/SqWCer2OSqXiCtDY/juKInS7XYzHY7fwj8YR9LqUHlJPRK+J22hMxvfUaL0q8Ogc+oqT94iZQhqw1fvn0y1FEyNk9Thm7UnCUtKqnR4Al6u1cZJia20SDA/MnIZi/CIIYILQeRyIIxibeBWMfySgU0iAw0azqIlN4iVBMTl2PAu6z445jObeFhd40vgWr0fpKk1OILByznjv6IVwn0ql4rb1qUhuy/eExyOAbJYdp0kafk2PxlCstVheXsbXvva1l/XuUnIP5NTKWQ0gAHDuuefiHe94BxqNBqrVKsrlMmq1Wuql9C0uNuHTl0cDmLSsN0u39UVfAr6EtKT5oup49Nh6Do5PFTxXhgOwQQmTl9aCO56/XC47TyQIAqytrbnzqQfjg64GeZVW0SQABQGl7TSwmgUY3EbnifPJ4+hxdU79lu0AcLSwG5EJZ8p9FtR2ADBfMMoUG0B5YdYXa5ZyS2qKsYs4mqX5FjGv9ygmxwuL8zoSMwumBwW4mEkcJZ4JbAJMPL+1MNEQraALY4xbR0XvE69PqT0Nsut2Kj79yG0VjDWWRKNEE0fUQ1eDRalJxhdZZKqrI/K4YRiiWq0iCAJ89rOfxX/9139tGG8up6ecUQCS9aK8HHnLW96CO+64w7nnGqAkd0vlw5cLQEpJUvFtluaq1BV/qmL0rXAqBD0fgFRbEoKYKmf/ReeaDFpQqOfidnzZwzB0XpS2Zee2Wemx/F4zeLKoJ1VWvlemCoVekB+z0LH43okmFWRlf/keYfI75oBhLWw0mqXk2iSWMVPiMEjiFoXqzDsI5yBB7wOAnfRhDebAYUxyXDuL0RBwOP8mSGiusJyk8EYT2Hg6Y7MSesuaAuLpvAmmpljrM8k6C86/JiLwmhlD4rz4z57eSz7HWuXOWiLOr08X6n0nmHA8/Ixj5rPKewbMVyr8q7/6K1eD9VKSeyCnVsKPfOQjHznVg3ilxA/Mnch+V199NS688EI89thj6PV6LpjMh1wDvUDa8iedpEHILL7XB5PNxsKfBDE/FkChMtHsFl/RatU1wYX9jCiTycSlHyv48dqZt0+QBNItT/Tceq1UHNxOFZt+7oNIFp2n8+Pf56ysq80AXH9vREcxMXWsml0AImAycIobxsziIMZ5DyYswoRFzNNwZz5KWADiyYyWimEs5oH4WVjDIJh5FxZ2VqgIY2BntSPJmOLZuRNgMgaAjbEw+gEW4uVU5pnGOABs8DL5O0GA88K/1YvR+6BAmxXs5jkJHnouBXR6fH6dET1XTXzgMxoEgTNelpaWXnZ7d9/Tz+XkyVnVyuR4YozBLbfcglqthk9+8pM4fPhwJiWiCtJX6AsLC1hbW3Oeg744vofhn9u3uNnsUJUjx3HnnXei0WjghRdewJEjR7B//36MRiMASCkZFheqBwHAeRb6Enc6HTSbTUeVEGx07ZMoSrq7GjPvpqvzoGDFa9FKaX6u4OJf+2bgqrQMt3+ptGqK0mZ6bmuBlWAXbwJMsQZrZrUaZtaexBSS3+NZAaBFQknBwK1GaMysT1acxDvmN3aGMzaVcTW/xhk40ZMxrDspuCze0IzRDHsIkE639ZMh/Ip0zpnvUfjAnwXYfI44h6Qg/Up0nXPOs8Y5/CJE1htleUdBkGT80fP44he/iGaziRtuuCEHiNNYcgARCYIA1113HX7nd34Hn/jEJ7B///5UN11VUJotBCTpo7VaLfViKfXlv6y6jf5OComei774LA78yZ/8SezZsyc19vX1dbz44ov44Q9/iMOHD+O5557Do48+6l5IVeLMv+fnHFe32021PmGTRVJKQRCg1+ulXnp//vTaKLwOKnJ/JTp/PhTcfI+Slm2xWHRekQ9O/tg2owqDwKAcxoANZop+1vCPip8pvSZIQAQFAAloWD/rSoGP+8+q2e0sUG9chtbs2kwIU6zPQChIxuEq15O4jDUhJkENdpr25DiXVMjD4RCVSmVD0oF6zOzC69cmUdgbi2CksTyN82m/ND9+wnHpcXTO+QxrJ+jxeOx6Y43HY1SrVQwGA/zt3/4tdu7cifPPP39DlmQup4cYe4aRiFpH8d+RwWCAe++9F/fddx+ee+45BEHg2i34oEDXm6LKS+sqlNLi72rB+1Ydq8rDMHTFffQC6vU6arUa3vCGN+C6667DpZde6rKk/Ovo9XpYX1/HgQMH8L3vfQ/33XefAy6lIorFoutpNBqN0Ov1UCwWUwH0er2OyWTiQEUVlZ9hpddCBUTFol4Ev6MXpYqKQiuYv5fLZXS73Q0ZcVlAreMgjcN79kz5Vnyv+FNJnQarwk1SGGidtzADFVgkHXUj2GicVJi71ibkrcwcTFKvlp1/Zmedew1gytuAaADXW4vUWRzBxmMYxLih98/YMX1ug6cBwM2ZtcmaMEy64Fwo1aXPmT8/URS5IL3G1OiF6v3T++YfM45jdxyudklDhIDHxA1ey2QyQa1WQ6vVcs8RwaRer+O2227Dr/zKr2x4tilZiSm5nBzJAeQ4olPz/PPP48Mf/jB6vR7q9TqKxSIGgwHa7bajffjSAHM6QAPRVFr68m0mfMFYp6GBYKUvqBCpYBncfPvb3443vOENuPLKK1PpwP51TadTPPzww3jooYfwrW99yxUeWps0vfPXtKaXpEChCpselG/xU4Fp/EM9O3ooekwNeivvr1lVOhf8XRWt3gs/ay6OY/zI7MFDtV9OxhnN2nXYKPnnWowUYYJAAuczb8d6lryZ/cd10Q1go0nSP4uFiBYA4lnPrRgoN2FMAkRJq/YASZYXYG0ME49xa/t/o2naAOZxLy1mpZfJtGzSXAqU3JbeIJCmBTWZgt+FYYhareaMEPVc9N4x7Zop4XEcpzpeaxwGSFbGpKfBOEmlUnFdHHg9g8EAxiRr2Pzu7/4uzjvvvE3flVxOjeQAcgLyl3/5l/jSl77kuosuLi6i0+ng6NGjiOMY27dvR7/fdy8aXX2fb+YYN4uLUNFScWZZjEpzAdiwdjVBjVYfrbw3velNeP3rX4/LLrsMzWbTUVa+9Pt9fP/738e3v/1t7Nu3D4PBAOvr6y4TR9NngXkTQ+3TpUIA9duR+HSK700QVLRoktea1coDSKejqnek23FuEZbxjfL/RNsuJQ0Q5yMGEM2aGc5AwRSSxaFc4SAzqgiWDKDTE8H8cxOyUxaMKcBOe8nvwazmBJgH15M/YG2MCyZP4trhXhg7V/DGmFSCA5Uw17tXGkufrSzPWcGfxyuVSiiXy+j1eq6bbrvd3pBFpUYCM7y4P3tuaTYVn7fRaIROp+PGy3haq9VCECRrxrRaLddRwVqLCy64AL//+7+fGSPbLFU5l1dfzjhi0Q+gvpJy55134siRI3j00UcxnU7R6XSc68+/a7XahjbifJmVztGgvBa6KbXEfXV/pvX6QX3m01PJsIBQi+pGoxG++tWv4u6773YK1lqLRqOB66+/HldccQV2796N888/H61WCzfddBNuuumm1Bysr6/jmWeewfe//308++yzWF1dxaFDhzAcDt15aQnTI1PviSDCFGQFfOX3VTmRRiE4cU0J7XasCoS/a3aan2Ls7sd0iEbwAtbCJpLYRDCjr0wSkwiDWfotAcEmdJcGw02SXUUHRCmspJ3JFNZYmKAA15wxKCfHMgAQJ8vexpPEUzFJrYixwDmTp1xhodKcqvR1dUw/ScGvR8qKKelzRxqUhYOdTsd5Fbrsr09pac8sjU3pvVxbW3MNQAuFggMXgt5oNHLPPQtzeRwWwm5WR5UDyKmRM84D0Qf21ZDBYIDf+q3fwvLyMgqFAkaj0YZ2HKrUgY0vrcZDFBxIzShNpMKXl2uf86UiYNEC5Dk1W8anwfzqbI6LL3CxWMTCwgJ27dqFCy+8EHv27MHFF1+MnTt3otlsbpiXTqeDF154AQcPHsQLL7yAF198Ec8//zy63a6jM7RPGFur+FlFCo60tH0PTmko3UYpPP5NEFWA1lqWIAjwSPFn8CwuB6kjAoixgJ2ta46ZFzGPdyBVz8EFoZLzzAoTDQBrYKNh4skEpSQNeBbjwKyHlgmLs9jIbKXDGdVVtW28cf1vULCJMuX1hmG4YU16xjk0kK0ZUTqnfjo1pVqtIgxD9Ho9jEYjNBoNdLtdd26lX/3EBAK0Zl6xal7fCXo3WkmvXSBYr8RnkI0/3/KWt+C9731v5jvpJ03kcvIk90BOUKrVKj70oQ/hS1/6Eh5//HEcOXLEWbpKrwDZWVYcI8W3GoH5Wh9ZgU5jTCrYrBYos5NINfB46p3oGNSC1IAraYW1tTWsrq7iiSeeSMU2tm3bhm3btmFxcRHXXHMNLrvsMuzZsweXX345Lr/88tSYe70e1tbWcOzYMRw+fBj/+Z//iQceeCBFo+ix1TvToDyBj3PJbZUW9DOT9BgKkuqVRFGEUaGUZFnZ2b3CDERmAfIEEJB4InQz7CzzysYz6snM4ucG4orM2ps0YCddIB7DGsZB7DymEvO4yefGxrCwKNohCna4Ye0XAgBb+JOO43WpsaDpsuoVE1g1LtTtdt2SBLwPVPY63wpK+qyzS4MG1P33keMn4Pj9tuid0lPh/r4nnMvpIWecB8KH+9U+RxRFuP/++/EP//APeP7551MvDK14VeS+m60vn6a3kttXi1qVLF9AVba0wvkdFYPWP2SlQfLlBZA6Js/PdEvtWUQvQr0B8tXAvM34LbfcgptvvhmXX345qtXqhvnjQl3D4RAHDhzAAw884PogqcfwUoF1jluzhii8NvXq/PTSOKzi3ur/QhfbMMu9nSGIVAMaCYzT+3ABcf09dsBibZzsPeuXZacjIJ7ChMVk0+k42a9Yn2Vhzc7HRakAvHbyH3jt+r/CWuviWRy/pkXT61Rjhc8Vnwf+zf21SpzPC6nBRqOR6jCtGYCcf1KkKToQ6XRe/V7HyvGqF1Uul1PxPj7L9Ir+7M/+7LipvHkg/dTIGQcgwKsbSPfloYcewkc/+lH3kgFIveyqCH2+XjORgHmbFHa+ZdO8SqWCarWK8XjsgthKyVAZ8IUNgvR61wBcozy++H72DYDUuDTmohQFt1Nvhtlig8HABUTr9XqKOqEVe9ttt+HNb34zrrzySjemrCDoaDTCI488ggceeAAPPvigA0RdC8VXGllxDhUqNu31FJsS/r/qb2AKLldLK11fC6bmGu9zXySobq3zToDQeS+mtOBau2PYTgoQw1kSg5nHWwp2jNtHf4Nw2nXXxQ4CmvqsXpmKPiOa2uuDrL9vEASuq8JmXgf3yWrQqTE6ttZXUFFvg0BkjEG1WkWlUsF0OnUBedYr3XTTTXj/+99/nHnPAeRUSQ4gr8C57rvvPnzxi1/E008/nVKuVHq0fH0L0e+ZRWuMVhc5ZABukSo2QFQLkkBFcMgKtNMzUA/Nt0T5k9Ytv+P4qQA4XnoBtFYJbgDcuXQMPJ7SbZQ3vOENeP3rX4+LL74Y27ZtQ71ed1XvKr1eD0888QSefPJJPPHEE+h2u1hbW3MV9+qZxXGcCjBr4Ja8e2RKuKf26xjZyiw2oT2YjFBL2IAp6S+RrvuYFQ3aOEnjtdEEmKwDhToMF5WaLVfrys6dco6xY7QfN4//T4ri8T0un+LzgZ2gzeQDUqzqRWpGIO+dn86rlr8f96AXoePRjDd9HtQYUS+EBgifK/Ww6vU6PvCBD+Cqq67C8SQHkFMjOYC8QjKZTPCpT30Kd999t1P6vsXmx0N8SovWOJsf+rwyA430aLTqly88lThXJNTt2BqFFBLbnQBz76NYLKLRaGA8HmM4HLp9/YI9HQswrxDnd2rBUsH5lePaeysrnbfRaOCKK67
This note takes the form of a brief progress‐report on secular‐variation work in South Africa. The results of observations carried out at the repeat stations in South Africa are summarized in tabular form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.