Background: Cigarette smoking is a public health problem that may influence physical properties of dental composites. Surface roughness is one of the physical properties of restorative materials that can influence their success. The use of nanofilled and nanohybrid composites in dentistry has substantially increased over the past few years. Purpose: The purpose of this study was to evaluate the surface roughness of nanofilled and nanohybrid composite resins exposed to kretek cigarette smoke. Methods: Twelve cylindrical specimens were prepared of each material and divided into two groups (n=6). For the control groups, the specimens were immersed in distilled water for 24 hours at 37oC and the water was renewed daily. For the experimental groups, the specimens were exposed daily to kretek cigarette smoke, then washed and stored in distilled water at 37oC. After 21 days, specimens were measured using a Surface Roughness Tester and the data was statistically analyzed. Result: Independent-T Test revealed that there were statistically significant differences in the surface roughness between control and experimental groups both nanofilled and nanohybrid, and between experimental groups nanofilled and nanohybrid. Conclusion: The exposure to kretek cigarette smoke can significantly increase the surface roughness of nanohybrid composites more than nanofilled composites.
Background: Cigarette smoking is a public health issue that may influence the physical properties of dental composites. Surface roughness is one of the physical properties of restorative materials potentially influencing their success. The use of nanofilled and nanohybrid composites in dentistry has increased substantially over the past few years. Purpose: The purpose of this study was to evaluate the surface roughness of nanofilled and nanohybrid composite resins exposed to kretek cigarette smoke. Methods: Twelve cylindrical specimens of each material were prepared and divided into two groups (n=6). In the control groups, the specimens were immersed in distilled water for 24 hours at 37°C, with the water being renewed daily. For the experimental groups, the specimens were exposed to kretek cigarette smoke on a daily basis, then washed and soaked in distilled water at 37°C. After 21 days, the specimens were measured using a Surface Roughness Tester and the data was then statistically analyzed. Results: An Independent-T Test revealed that there were statistically significant differences in the surface roughness between the control and experimental groups of both nanofilled and nanohybrid composites, as well as between the nanofilled experimental group and the nanohybrid experimental group. Conclusion: Exposure to kretek cigarette smoke can increase the surface roughness of nanohybrid composites to a significantly greater extent than nanofilled composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.