Background & AimsThree-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D) tissue cultured from primary colon cells has not been accomplished.MethodsThe surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified.ResultsThe monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells.ConclusionsThis study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies.
The development of physiologically relevant intestinal models fueled by breakthroughs in primary cell-culture methods has enabled successful recapitulation of key features of intestinal physiology. These advances, paired with engineering methods, for example incorporating chemical gradients or physical forces across the tissues, have yielded ever more sophisticated systems that enhance our understanding of the impact of the host microbiome on human physiology as well as on the genesis of intestinal diseases such as inflammatory bowel disease and colon cancer. In this review we highlight recent advances in the development and usage of primary cell-derived intestinal models incorporating monolayers, organoids, microengineered platforms, and macrostructured systems, and discuss the expected directions of the field. Current Approaches to Modeling Intestinal Physiology The small and large intestine, located after the stomach, comprise the lower human gastrointestinal tract and play crucial roles in nutrient absorption and in housing much of the human microbiome (see Glossary) (Figure 1, Key Figure). In the past decade, model systems have attempted to recapitulate the complex, in vivo intestinal physiology using cell lines derived from intestinal tumors such as Caco-2 cells in place of primary epithelial cells. Advanced organ-on-achip systems were created by culturing Caco-2 cells on the geometrically or mechanically engineered platforms to properly mimic the structural and mechanical properties of the human intestine [1-6]. To mimic the mucosal architecture, porous scaffolds were micromolded to villus-like projections on which Caco-2 cells could be cultured [1,6]. To recapitulate the mechanically dynamic environment, microfluidic systems were developed with fluid flowing both above and below a Caco-2 cell layer growing on a rhythmically stretched flexible surface [2-5]. These systems were designed to mimic the shear forces and contractile motions occurring in the small intestine. Caco-2 cells, as well as other tumor cell lines, have also been used as surrogate intestinal epithelial cells to probe the interactions between multiple tissue types [7]. These organ-on-a-chip models incorporating tumor cells offer new abilities to emulate the structure, function, and physiology of the living human intestine that are not possible with conventional tissue-cultured monolayers. However, as our understanding of these organs progresses, it is clear that these prior tumor model systems fall short in their ability to accurately reflect in vivo physiology because the models do not possess all of the intestinal epithelial subtypes and either lack receptors, transporters, drug-metabolizing enzymes, or express these proteins at levels different from in vivo. Thus, in vitro replicas of the intestines that more accurately replicate intestinal physiology are required and will need to utilize primary cells. Accordingly, a suite of platforms employing primary cells in a variety of assay formats, including organoid [8,9], monolayer, and shape...
In vitro models of the human intestinal epithelium derived from primary stem cells are much needed for the study of intestinal immunology in health and disease. Here, we describe an intestinal monolayer cultured on a porous membrane with accessible basal and apical surfaces for assay of intestinal cytokine production in response to stimuli. The system was composed of a differentiated, confluent epithelial monolayer derived from human primary stem cells obtained from small or large intestine. Interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) were the most abundant inflammatory cytokines produced by the intestinal epithelium. The epithelium from all five tested regions of the intestine preferentially secreted into the apical reservoir of the monolayer, with a 26-fold greater concentration of IL-8 present in the apical reservoir of the colonic monolayer relative to that in the basal reservoir. Upon application of tumor-necrosis factor α (TNF-α) to the basal surface of the colonic monolayer, the IL-8 concentration significantly increased in the basal, but not the apical, reservoir. A dose-dependent elevation of IL-8 in the basal reservoir was observed for TNF-α-stimulation of the monolayer but not for an organoid-based platform. To demonstrate the utility of the monolayer system, 88 types of dietary metabolites or compounds were screened for their ability to modulate IL-8 production in the basal reservoir of the intestinal monolayer in the absence or presence of TNF-α. No dietary metabolite or compound caused an increase in IL-8 in the basal reservoir in the absence of TNF-α. After addition of TNF-α to the monolayer, two compounds (butyrate and gallic acid) suppressed IL-8 production, suggesting their potential anti-inflammatory effects, whereas the dietary factor forskolin significantly increased IL-8 production. These results demonstrate that the described human-intestinal-monolayer platform has the potential for assays and screening of metabolites and compounds that alter the inflammatory response of the intestine.
Organoid culture has had a significant impact on in vitro studies of the intestinal epithelium; however, the exquisite architecture, luminal accessibility, and lineage compartmentalization found in vivo has not been recapitulated in the organoid systems. We have used a microengineered platform with suitable extracellular matrix contacts and stiffness to generate a self-renewing mouse colonic epithelium that replicates key architectural and physiological functions found in vivo, including a surface lined with polarized crypts. Chemical gradients applied to the basal–luminal axis compartmentalized the stem/progenitor cells and promoted appropriate lineage differentiation along the in vitro crypt axis so that the tissue possessed a crypt stem cell niche as well as a layer of differentiated cells covering the luminal surface. This new approach combining microengineered scaffolds, native chemical gradients, and biophysical cues to control primary epithelium ex vivo can serve as a highly functional and physiologically relevant in vitro tissue model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.