The race for innovation has turned into a race for data. Rapid developments of new technologies, especially in the field of artificial intelligence, are accompanied by new ways of accessing, integrating, and analyzing sensitive personal data. Examples include financial transactions, social network activities, location traces, and medical records. As a consequence, adequate and careful privacy management has become a significant challenge. New data protection regulations, for example in the EU and China, are direct responses to these developments. Data anonymization is an important building block of data protection concepts, as it allows to reduce privacy risks by altering data. The development of anonymization tools involves significant challenges, however. For instance, the effectiveness of different anonymization techniques depends on context, and thus tools need to support a large set of methods to ensure that the usefulness of data is not overly affected by risk-reducing transformations. In spite of these requirements, existing solutions typically only support a small set of methods. In this work, we describe how we have extended an open source data anonymization tool to support almost arbitrary combinations of a wide range of techniques in a scalable manner. We then review the spectrum of methods supported and discuss their compatibility within the novel framework. The results of an extensive experimental comparison show that our approach outperforms related solutions in terms of scalability and output data quality-while supporting a much broader range of techniques. Finally, we discuss practical experiences with ARX and present remaining issues and challenges ahead.
Background: Modern data driven medical research promises to provide new insights into the development and course of disease and to enable novel methods of clinical decision support. To realize this, machine learning models can be trained to make predictions from clinical, paraclinical and biomolecular data. In this process, privacy protection and regulatory requirements need careful consideration, as the resulting models may leak sensitive personal information. To counter this threat, a wide range of methods for integrating machine learning with formal methods of privacy protection have been proposed. However, there is a significant lack of practical tools to create and evaluate such privacy-preserving models. In this software article, we report on our ongoing efforts to bridge this gap. Results: We have extended the well-known ARX anonymization tool for biomedical data with machine learning techniques to support the creation of privacy-preserving prediction models. Our methods are particularly well suited for applications in biomedicine, as they preserve the truthfulness of data (e.g. no noise is added) and they are intuitive and relatively easy to explain to non-experts. Moreover, our implementation is highly versatile, as it supports binomial and multinomial target variables, different types of prediction models and a wide range of privacy protection techniques. All methods have been integrated into a sound framework that supports the creation, evaluation and refinement of models through intuitive graphical user interfaces. To demonstrate the broad applicability of our solution, we present three case studies in which we created and evaluated different types of privacy-preserving prediction models for breast cancer diagnosis, diagnosis of acute inflammation of the urinary system and prediction of the contraceptive method used by women. In this process, we also used a wide range of different privacy models (k-anonymity, differential privacy and a game-theoretic approach) as well as different data transformation techniques. Conclusions: With the tool presented in this article, accurate prediction models can be created that preserve the privacy of individuals represented in the training set in a variety of threat scenarios. Our implementation is available as open source software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.