Background Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random Forest Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador. Results Spectral indices derived from the Landsat-8 (L8) sensors, OLI and TIRS, topographic, geological, soil taxonomy and climate variables were used in combination with 500 in situ SOC sampling data for training and calibrating a suitable predictive SOC model. The final predictive model selected uses nine predictors with a RMSE of 1.72% and a R2 of 0.82 for SOC expressed in weight %, a RMSE of 25.8 Mg/ha and a R2 of 0.77 for the model in units of Mg/ha. Satellite-derived indices such as VARIG, SLP, NDVI, NDWI, SAVI, EVI2, WDRVI, NDSI, NDMI, NBR and NBR2 were not found to be strong SOC predictors. Relevant predictors instead were in order of importance: geological unit, soil taxonomy, precipitation, elevation, orientation, slope length and steepness (LS Factor), Bare Soil Index (BI), average annual temperature and TOA Brightness Temperature. Conclusions Variables such as the BI index derived from satellite images and the LS factor from the DEM increase the SOC mapping accuracy. The mapping results show that over 57% of the study area contains high concentrations of SOC, between 150 and 205 Mg/ha, positioning the herbaceous páramo as an ecosystem of global importance. The results obtained with this study can be used to extent the SOC mapping in the whole herbaceous ecosystem of Ecuador offering an efficient and accurate methodology without the need for intensive in situ sampling.
Background and aims The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied. Methods The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers. Based on the mapping of SOC in two horizons (0–30 cm and 30–60 cm) we predict SOC with high accuracy in the complex and mountainous heterogeneous páramo system in Ecuador. A large SOC database (in weight % and in Mg/ha) of 493 and 494 SOC sampling data points from 0–30 cm and 30–60 cm soil profiles, respectively, were used to calibrate GPR models using Sentinel-2 and GIS predictors (i.e., Temperature, Elevation, Soil Taxonomy, Geological Unit, Slope Length and Steepness (LS Factor), Orientation and Precipitation). Results In the 0–30 cm soil profile, the models achieved a R2 of 0.85 (SOC%) and a R2 of 0.79 (SOC Mg/ha). In the 30–60 cm soil profile, models achieved a R2 of 0.86 (SOC%), and a R2 of 0.79 (SOC Mg/ha). Conclusions The used Sentinel-2 variables (FVC, CWC, LCC/Cab, band 5 (705 nm) and SeLI index) were able to improve the estimation accuracy between 3–21% compared to previous results of the same study area. CWC emerged as the most relevant biophysical variable for SOC prediction.
Identifying the SOC levels and revealing the potential of SOC storage of ecosystems difficult to sample and study are necessary contributions to the understanding of the global reserves of SOC. Wetlands store large amounts of SOC within their soils. They have an important role in water regulation and have great biological and floristic diversity. Therefore, this study aimed to assess the SOC stock in Atillo micro-watershed in the Ecuadorian Andean wetlands at two soil depths (0–30 cm and 30–60 cm below ground) and to assess the importance of the ecosystem and its conservation in favor of reducing emissions due to degradation processes. For that, we sampled the study zone with 101 composite samples of soil to obtain the SOC storage for each sample point in Mg/ha. A SOC estimation to evaluate its spatial distribution was performed using the geostatistical method Kriging. The results show a high storage capacity of the study zone with SOC values of 126 to 454 Mg/ha in the 0–30 cm soil profile and 148 to 350 Mg/ha in the 30–60 cm soil profile. The preservation and protection mechanisms of high SOC reserves should be taken into account to prevent the emission of CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.