Abstract. We study the infinite time ruin probability for an insurance company in the classical Cramér-Lundberg model with finite exponential moments. The additional non-classical feature is that the company is also allowed to invest in some stock market, modeled by geometric Brownian motion. We obtain an exact analogue of the classical estimate for the ruin probability without investment, i.e. an exponential inequality. The exponent is larger than the one obtained without investment, the classical Lundberg adjustment coefficient, and thus one gets a sharper bound on the ruin probability. A surprising result is that the trading strategy yielding the optimal asymptotic decay of the ruin probability simply consists in holding a fixed quantity (which can be explicitly calculated) in the risky asset, independent of the current reserve. This result is in apparent contradiction to the common believe that 'rich' companies should invest more in risky assets than 'poor' ones. The reason for this seemingly paradoxical result is that the minimization of the ruin probability is an extremely conservative optimization criterion, especially for 'rich' companies.
The Tomita-Takesaki modular groups and conjugations for the observable algebras of space-like wedges and the vacuum state are computed for translationally covariant, but possibly not Lorentz covariant, generalized free quantum fields in arbitrary space-time dimension d. It is shown that for d ≥ 4 the condition of geometric modular action (CGMA) of Buchholz, Dreyer, Florig and Summers [BDFS], Lorentz covariance and wedge duality are all equivalent in these models. The same holds for d = 3 if there is a mass gap. For massless fields in d = 3, and for d = 2 and arbitrary mass, CGMA does not imply Lorentz covariance of the field itself, but only of the maximal local net generated by the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.