In wireless sensor networks, spatially distributed nodes provide location-dependent sensor information. Therefore, knowledge about the 3D position of all nodes is crucial for the numerous applications that require autonomous mobility. Furthermore, to acquire the nodes' poses and the complete 6D network constellation, the 3D orientation of each node is also required. While many theoretical localization concepts exist for wireless sensor networks, there is still a lack of reliable system and localization concepts which enable robust real-time tracking in real-world scenarios. Therefore, we present a system approach based on an advanced 24 GHz wireless local positioning system, providing distance and angle measurements between pairs of nodes. Furthermore, an extended Kalman filter based localization algorithm is proposed, which evaluates these measurements to track the time varying 6D poses of all nodes in the network. Because only relative measurements are available, one node is chosen to define a joint navigation system. Hence, the proposed system works without any previously installed infrastructure or prior information of the network. The system and localization algorithm are validated by measurements performed in a mobile wireless sensor network comprising six nodes in an indoor scenario with strong multipath propagation. However, despite the challenging environment, the system allows for a stable and accurate 6D pose estimation of all robots in the network with 3D positioning root mean square errors of 6 to 15 cm.
We present an indoor positioning system based on time-of-arrival (TOA) and angle-of-arrival (AOA/bearing) estimations using ultrasonic signals. Sensor anchor nodes deployed in the area of interest detect incoming signals from a mobile ultrasonic transmitter. The developed algorithm uses the range-bearing positioning method and can deal with ambiguous AOA sensor data. The system delivers 2D locations. We tested our positioning system inside an office building. Our system can locate objects with an error well below 10 cm even under these conditions with multipath reflections. Keywords-local positioning system; ultrasonic sensors; angleof-arrival; range-bearing positioning978-1-5090-2042-3/16/$31.00
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.