Unspecific peroxygenases (UPOs) catalyze the selective transfer of single oxygen atoms from peroxides to a broad range of substrates such as un-activated hydrocarbons. Since specific oxyfunctionalizations are among the most-desired reactions in synthetic chemistry, UPOs are of high industrial interest. To broaden the number of available enzymes, computational and experimental methods were combined in this study. After a comparative alignment and homology modelling, the enzymes were expressed directly in P. pastoris. Out of ten initially selected sequences, three enzymes (one from Aspergillus niger and two from Candolleomyces aberdarensis) were actively expressed. Cultivation of respective expression clones in a bioreactor led to production titers of up to 300 mg L−1. Enzymes were purified to near homogeneity and characterized regarding their specific activities and pH-optima for typical UPO substrates. This work demonstrated that directed evolution is not necessarily required to produce UPOs in P. pastoris at respective titers. The heterologous producibility of these three UPOs will expand the toolbox of available enzymes and help to advance their synthetic application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.