Lattice-based cryptography is one of the leading proposals for post-quantum cryptography. The Shortest Vector Problem (SVP) is arguably the most important problem for the cryptanalysis of latticebased cryptography, and many lattice-based schemes have security claims based on its hardness. The best quantum algorithm for the SVP is due to Laarhoven [Laa16] and runs in (heuristic) time 2 0.2653d+o(d) . In this article, we present an improvement over Laarhoven's result and present an algorithm that has a (heuristic) running time of 2 0.2570d+o(d) where d is the lattice dimension. We also present time-memory trade-offs where we quantify the amount of quantum memory and quantum random access memory of our algorithm. The core idea is to replace Grover's algorithm used in [Laa16] in a key part of the sieving algorithm by a quantum random walk in which we add a layer of local sensitive filtering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.