Despite aggressive antibiotic therapy, bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associated with structured, antibiotic-tolerant bacterial aggregates known as biofilms. We have demonstrated the effects of non-bactericidal, low-dose nitric oxide (NO), a signaling molecule that induces biofilm dispersal, as a novel adjunctive therapy for P. aeruginosa biofilm infection in CF in an ex vivo model and a proof-of-concept double-blind clinical trial. Submicromolar NO concentrations alone caused disruption of biofilms within ex vivo CF sputum and a statistically significant decrease in ex vivo biofilm tolerance to tobramycin and tobramycin combined with ceftazidime. In the 12-patient randomized clinical trial, 10 ppm NO inhalation caused significant reduction in P. aeruginosa biofilm aggregates compared with placebo across 7 days of treatment. Our results suggest a benefit of using low-dose NO as adjunctive therapy to enhance the efficacy of antibiotics used to treat acute P. aeruginosa exacerbations in CF. Strategies to induce the disruption of biofilms have the potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-related diseases.
Pneumolysin is an important virulence factor of the human pathogen Streptococcus pneumoniae. Sequence analysis of the ply gene from 121 clinical isolates of S. pneumoniae uncovered a number of alleles. Twenty-two strains were chosen for further analysis, and 14 protein alleles were discovered. Five of these had been reported previously, and the remaining 9 were novel. Cell lysates were used to determine the specific hemolytic activities of the pneumolysin proteins. Six strains showed no hemolytic activity, and the remaining 16 were hemolytic, to varying degrees. We report that the nonhemolytic allele reported previously in serotype 1, sequence type (ST) 306 isolates is also present in a number of pneumococcal isolates of serotype 8 that belong to the ST53 lineage. Serotype 1 and 8 pneumococci are known to be associated with outbreaks of invasive disease. The nonhemolytic pneumolysin allele is therefore associated with the dominant clones of outbreak-associated serotypes of S. pneumoniae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.