We show for the first time that elevated levels of YKL-40 in MO patients decreased after massive weight loss via bariatric surgery. YKL-40 was correlated with HOMA-IR and fasting insulin levels, indicating a role in developing processes of IR and T2DM. The tight association of MCP-1 (plaque development) and YKL-40 (plaque rupture) points to a central role of both proteins, contributing to the increased cardiovascular mortality in MO patients.
OBJECTIVELow levels of fetuin-A, a systemic calcification inhibitor, are linked to mortality in patients on dialysis. In contrast, elevated fetuin-A is associated with cardiovascular events in non-renal patients. We investigated fetuin-A in patients with type 2 diabetes and peripheral arterial disease (PAD).RESEARCH DESIGN AND METHODSWe studied fetuin-A in 76 patients with PAD and normal glucose metabolism (NGM-PAD) and in 129 patients with PAD and type 2 diabetes (type 2 diabetes–PAD). Additionally, 40 patients with diabetes without any complications (type 2 diabetes–non-PAD) were examined.RESULTSType 2 diabetes–PAD subjects (399 ± 155 μg/ml) had significantly higher fetuin-A levels than type 2 diabetes–non-PAD subjects (247 ± 42; P < 0.001). In NGM-PAD subjects (376 ± 144), fetuin-A was significantly higher than in type 2 diabetes–non-PAD subjects (P < 0.001). Type 2 diabetes–PAD patients with mediasclerosis had lower fetuin-A than subjects without (P < 0.03). Regression analysis in type 2 diabetes–PAD subjects revealed that glycated A1C (P < 0.001) and mediasclerosis (P = 0.004) were the strongest predictors of fetuin-A. Multivariate regression revealed that a 1-SD increase in fetuin-A was associated with an odds ratio (OR) of 2.1 (95% CI 1.1–3.3; P < 0.001) for the prevalence of PAD and an OR of 1.4 (1.0–1.7, P = 0.039) for the prevalence of myocardial infarction.CONCLUSIONSIn contrast to previous findings, fetuin-A was higher in type 2 diabetes–PAD patients than in type 2 diabetes–non-PAD patients. In NGM-PAD patients, fetuin-A was also higher than in type 2 diabetes–non-PAD patients. In type 2 diabetes–PAD patients, fetuin-A was inversely associated with mediasclerosis—the calcification process pathognomonic for diabetic PAD. This association persisted in multivariate regression, which is in line with the calcification inhibition in coronary heart or renal disease.
Our results support the hypothesis that TG may be involved in the pathogenesis of MVD in diabetic nephropathy as for the first time, we could show that patients with T2DM in different stages of diabetic nephropathy had disturbances in thrombin generation.
Recently, SFRP4 was identified as a molecular link between islet inflammation and defective insulin secretion. Gene co-expression analysis detected a molecule associated with type 2 diabetes mellitus (T2D), elevated HbA1c, and reduced insulin secretion in mice as well as in a pilot sample of humans. To our knowledge SFRP4 has never been investigated in patients with different types of diabetes. We included 179 patients: 46 with type 1 diabetes (T1D), 30 age matched healthy controls for patients with T1D (CO-T1D), 55 with T2D, 37 with latent autoimmune diabetes of the adult (LADA) and 30 healthy controls (CO) for patients with T2D and LADA. Apart from anthropometric data, lipids and renal parameters were assessed. SFRP4 levels were measured by a commercial ELISA. Patients with diabetes had significant higher SFRP4 levels than CO: T2D vs. CO: 37.1±26.7 vs. 8.8±3.0 ng/ml, p<0.001; LADA vs. CO: 15.6±6.2 vs. 8.7±3.0 ng/ml, p<0.001; T1D vs. CO-T1D: 24.6±17.9 vs. 16.9±4.5 ng/ml, p=0.011. SFRP4 levels were correlated with age, BMI, HbA1c, HDL-cholesterol, and triglycerides. A multivariate model revealed HDL-cholesterol, triglycerides and BMI as predictors for SFRP4. This is the first study demonstrating that SFRP4 is significantly increased in patients with different types of diabetes suggesting that this protein is generally involved in islet dysfunction and potentially subclinical inflammation irrespective of type of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.