Protein phase behavior and protein-protein interactions can be tuned by additives. We experimentally determined the phase behavior of lysozyme solutions, namely, the cloud-point temperature (CPT), in the presence of two additives, sodium chloride (NaCl) and guanidine hydrochloride (GuHCl). Their concentrations are chosen to maintain the secondary structure, as verified by CD spectroscopy. Our data indicate that the salts affect the CPT through electrostatic screening and salt-specific contributions. At high salt concentrations, the CPT is a linear function of the additive concentration for the salts NaCl and GuHCl as well as for a nonionic additive, glycerol, and a solvent, dimethyl sulfoxide (DMSO). Their molar temperature increments, which rank their specific effects on the CPT (NaCl > 0 > DMSO > glycerol > GuHCl), are found to be essentially independent of the protein concentration. In particular, the specific effects of NaCl and GuHCl in mixtures are found to be additive, indicating the absence of synergies or suppressions between both salts. Thus, molar temperature increments represent a characteristic measure for the specific effects of additives on protein interactions, which is easily accessible in lab experiments and which will help to characterize the effects of additives on protein interactions and phase behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.