The glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring D hydroxyls, the 16-OH in estriol and 16-epiestriol, but the 17-OH in 17-epiestriol. Kinetic analyses indicated that the 17-OH configuration plays a major role in the affinity of UGT2B7 for estrogens. The glucuronidation of the different estriols by the human liver and intestine microsomes reflects the activity of UGT1A10 and UGT2B7 in combination with the tissues' difference in UGT1A10 expression. The UGT1A10 mutant 1A10-F93G exhibited much higher V max values than UGT1A10 in estriol and 17-epiestriol glucuronidation, but a significantly lower value in 16-epiestriol glucuronidation. To this study on estriol glucuronidation we have added experiments with 13-epiestradiol, a synthetic estradiol in which the spatial arrangement of the methyl on C18 and the hydroxyl on C17 is significantly different than in other estrogens. In comparison with estradiol glucuronidation, the C13 configuration change decreases the turnover of UGTs that conjugate the 3-OH, but increases it in UGTs that primarily conjugate the 17-OH. Unexpectedly, UGT2B17 exhibited similar conjugation rates of both the 17-OH and 3-OH of 13-espiestradiol. The combined results reveal the strong preference of UGT1A10 for the 3-OH of physiologic estrogens and the equivalently strong preference of UGT2B7 and UGT2B17 for the hydroxyls on ring D of such steroid hormones.
Understanding drug glucuronidation in the dog, a preclinical animal, is important but currently poorly characterized at the level of individual enzymes. We have constructed cDNAs for the 10 dog UDP-glucuronosyltransferases of subfamily 1A (dUGT1As), expressed them in insect cells, and assayed their activity as well as the activity of the nine human UGT1As, toward 14 compounds. The goal was to find out whether individual dUGT1As and individual human UGT1As have similar substrate specificities. The results revealed similarities but also many differences. For example, similarly to the human UGT1A10, dUGT1A11 exhibited high glucuronidation activity toward the 3-OH of 17-b-estradiol, 17-a-estradiol, and ethinylestradiol, and also conjugated the drug entacapone. Unlike the human UGT1A10, however, it failed to catalyze considerable rates of R-propranolol, diclofenac, and indomethacin glucuronidation.The estrogen glucuronidation assays revealed that dUGT1A8 and dUGT1A10 have a capacity to catalyze the formation of (linked) diglucuronides, an activity no human UGT1A exhibited. dUGT1A2-dUGT1A4 are homologs of the human UGT1A4, but none of them catalyzed N-glucuronidation of dexmedetomidine. Contrary to the human UGT1A4, however, dUGT1A2-dUGT1A4 catalyzed indomethacin and diclofenac glucuronidation. It may be concluded that, perhaps with the exception of UGT1A6, high similarities in substrate specificity between individual dog and human UGTs of subfamily 1A are rare or partial. Activity assays with liver and intestine microsomes of both dog and human further revealed interspecies differences, particularly in glucuronidation rates. In the dog, the microsomes assays also strongly suggested important roles for dUGTs of other subfamilies, mainly in the liver.
Uridine diphosphate glucuronosyltransferases (UGTs) are key enzymes responsible for the body's ability to process a variety of endogenous and exogenous compounds. Significant gains in understanding UGT function have come from the analysis of variants seen in patients. We cared for a Sudanese child who showed clinical features of type 1 Crigler-Najjar syndrome (CN-1), namely severe unconjugated hyperbilirubinemia leading to liver transplantation. CN-1 is an autosomal recessive disorder caused by damaging mutations in the gene for UGT1A1, the hepatic enzyme responsible for bilirubin conjugation in humans. Clinical genetic testing was unable to identify a known pathogenic UGT1A1 mutation in this child. Instead, a novel homozygous variant resulting in an in-frame deletion, p.Val275del, was noted. Sanger sequencing demonstrated that this variant segregated with the disease phenotype in this family. We further performed functional testing using recombinantly expressed UGT1A1 with and without the patient variant, demonstrating that p.Val275del results in a complete lack of glucuronidation activity, a hallmark of CN-1. Sequence analysis of this region shows a high degree of conservation across all known catalytically active human UGTs, further suggesting that it plays a key role in the enzymatic function of UGTs. Finally, we note that the patient's ethnicity likely played a role in his variant being previously undescribed and advocate for greater diversity and inclusion in genomic medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.