This document on the CMB-S4 Science Case, Reference Design, and Project Plan is the product of a global community of scientists who are united in support of advancing CMB-S4 to cross key thresholds in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 is planned to be a joint National Science Foundation (NSF) and Department of Energy (DOE) project, with the construction phase to be funded as an NSF Major Research Equipment and Facilities Construction (MREFC) project and a DOE High Energy Physics (HEP) Major Item of Equipment (MIE) project. At the time of this writing, an interim project office has been constituted and tasked with advancing the CMB-S4 project in the NSF MREFC Preliminary Design Phase and toward DOE Critical Decision CD-1. DOE CD-0 is expected imminently.CMB-S4 has been in development for six years. Through the Snowmass Cosmic Frontier planning process, experimental groups in the cosmic microwave background (CMB) and broader cosmology communities came together to produce two influential CMB planning papers, endorsed by over 90 scientists, that outlined the science case as well as the CMB-S4 instrumental concept [1, 2]. It immediately became clear that an enormous increase in the scale of ground-based CMB experiments would be needed to achieve the exciting thresholdcrossing scientific goals, necessitating a phase change in the ground-based CMB experimental program. To realize CMB-S4, a partnership of the university-based CMB groups, the broader cosmology community, and the national laboratories would be needed.The community proposed CMB-S4 to the 2014 Particle Physics Project Prioritization Process (P5) as a single, community-wide experiment, jointly supported by DOE and NSF. Following P5's recommendation of CMB-S4 under all budget scenarios, the CMB community started in early 2015 to hold biannual workshops -open to CMB scientists from around the world -to develop and refine the concept. Nine workshops have been held to date, typically with 150 to 200 participants. The workshops have focused on developing the unique and vital role of the future ground-based CMB program. This growing CMB-S4 community produced a detailed and influential CMB-S4 Science Book [3] and a CMB-S4 Technology Book [4]. Over 200 scientists contributed to these documents. These and numerous other reports, workshop and working group wiki pages, email lists, and much more may be found at the website http://CMB-S4.org.Soon after the CMB-S4 Science Book was completed in August 2016, DOE and NSF requested the Astronomy and Astrophysics Advisory Committee (AAAC) to convene a Concept Definition Taskforce (CDT) to conduct a CMB-S4 concept study. The resulting report was unanimously accepted in late 2017. 1 One recommendation of the CDT report was that the community should organize itself into a formal collaboration. An Interim Collaboration Coordination Committee was elected by the community to coordinate this process. The resulting draft bylaws were refined at the Spring 2018 CMB-S4...
CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from SPIDERʼs 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range ℓ 33 307 < <. No other limits exist over this full range of angular scales, and SPIDER improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on ℓ ℓ C 1 2 ℓ VV p + ( ) ( ) ranging from 141 to 255 μK 2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.