Glomerular diseases are a major cause for chronic kidney disorders. In the majority of cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and subsequent loss of podocytes. Here, we establish a link between components of the Par3 polarity complex and actin regulators, which are necessary to establish and maintain the podocytes architecture utilizing both, mouse and Drosophila models. We demonstrate that the two mammalian Par3 proteins, Par3A and Par3B, share redundant functions despite differing in their ability to interact with other components of the Par complex. Only simultaneous inactivation of both Par3 proteins causes a severe disease phenotype in mouse podocytes by regulating Rho-GTP levels involving the actin regulators Synaptopodin and CD2AP in an aPKC independent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.