BackgroundCellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis.ResultsThe base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L−1 for the integrated cases, as compared to 0.581 EUR L−1 for the off-site case.ConclusionsAn integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-017-0733-0) contains supplementary material, which is available to authorized users.
Understanding the influence of method choices on results in life-cycle assessments is essential to draw informed conclusions. As the climate impact of bioenergy remains a debated topic, the focus of this study is how the chosen temporal framing influences a comparison of the climate impact of utilizing residual biomass for biofuel production to that of leaving the biomass to decay. In order to compare the biofuel scenario to its corresponding reference scenario where biomass is left to decay, a variety of analytical approaches were used: using time-aggregated and time-dependent life-cycle inventories and climate-impact assessment methods, assuming biogenic carbon to be climate neutral or not, using metrics for cumulative or instantaneous climate impact, and with different time horizons. Two cases of residual biofuel feedstocks were assessed: logging residues from Norway spruce forest, and straw from wheat cultivation. Consideration of the studied method choices appears to be especially relevant for forest residual biomass, as illustrated by the ranges of parity times for logging residues (25 to 95 years), and the results which vary with the chosen climate-impact metric, time-horizon, and approach for including biogenic carbon. Illustrating the time-dependence of results can, in general, provide a better understanding of the climate impact of utilizing residual biomass for biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.