Salmonella enterica is an important foodborne pathogen that uses secreted effector proteins to manipulate host pathways to facilitate survival and dissemination. Different S. enterica serovars cause disease syndromes ranging from gastroenteritis to typhoid fever and vary in their effector repertoire. We leveraged this natural diversity to identify stm2585, here designated sarA (Salmonella anti-inflammatory response activator), as a Salmonella effector that induces production of the anti-inflammatory cytokine IL-10. RNA-seq of cells infected with either ΔsarA or wild-type S. Typhimurium revealed that SarA activates STAT3 transcriptional targets. Consistent with this, SarA is necessary and sufficient for STAT3 phosphorylation, STAT3 inhibition blocks IL-10 production, and SarA and STAT3 interact by co-immunoprecipitation. These effects of SarA contribute to intracellular replication in vitro and bacterial load at systemic sites in mice. Our results demonstrate the power of using comparative genomics for identifying effectors and that Salmonella has evolved mechanisms for activating an important anti-inflammatory pathway.
Retrons are genetic retroelements, commonly found in bacterial genomes and recently repurposed as genome editing tools. Their encoded reverse transcriptase (RT) produces a multi-copy single-stranded DNA (msDNA). Despite our understanding of their complex biosynthesis, the function of msDNAs and therefore, the physiological role of retrons has remained elusive. We establish that the retron-Sen2 in Salmonella Typhimurium encodes a toxin, which we have renamed as RcaT (Retron cold-anaerobic Toxin). RcaT is activated when msDNA biosynthesis is perturbed and its toxicity is higher at ambient temperatures or during anaerobiosis. The RT and msDNA form together the antitoxin unit, with the RT binding RcaT, and the msDNA enabling the antitoxin activity. Using another E. coli retron, we establish that this toxin/antitoxin function is conserved, and that RT-toxin interactions are cognate.Altogether, retrons constitute a novel family of tripartite toxin/antitoxin systems..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.