A novel, objective, and rapid computed motility inhibition (CMI) assay was developed to identify and assess sublethal injury in toxin-exposed boar spermatozoa and compared with a subjective visual motility inhibition (VMI) assay. The CMI values were calculated from digital micrographic videos using a custom MATLAB® script by contrasting the motility index values of each experiment with those of the background and control experiments. Following a comparison of the CMI and VMI assays results, it was determined that their agreement depended on the shape of the dose-response curve. Toxins that exhibited a steep slope were indicative of good agreement between the assays. Those depicted by a gentle decline in the slope of the dose-response curve, the CMI assay were shown to be two times more sensitive than the VMI assay. The CMI assay was highly sensitive to the inhibition of mitochondrial function and glucose transport activity by sublethal doses of toxins and to disruption of cellular cation homeostasis by carrier ionophoric toxins, when compared to the cytotoxicity and lethal toxicity assays (i.e., that evaluated the inhibition of cell proliferation in somatic cell lines (FL, PK-15, and MNA cells)) and disruption to spermatozoa membrane integrity. The CMI assay recognized subtle sublethal toxicity changes in metabolism, manifested as a decrease in boar spermatozoa motility. Thus, it was feasible to effectively compare the objectively-measured numerical values for motility inhibition using the CMI assay against those reflecting lethal damage in the spermatozoa cells and somatic cell lines using a cytotoxicity assay.
The secretion of metabolites in guttation droplets by indoor moulds is not well documented. This study demonstrates the guttation of metabolites by actively growing common indoor moulds. Old and fresh biomasses of indoor isolates of Aspergillus versicolor, Chaetomium globosum, Penicillium expansum, Trichoderma atroviride, T. trixiae, Rhizopus sp. and Stachybotrys sp. were compared. Metabolic activity indicated by viability staining and guttation of liquid droplets detected in young (<3 weeks old) biomass were absent in old (>6 months old) cultures consisting of dehydrated hyphae and dormant conidia. Fresh (<3 weeks old) biomasses were toxic more than 10 times towards mammalian cell lines (PK-15 and MNA) compared to the old dormant, dry biomasses, when calculated per biomass wet weight and per conidial particle. Surfactant activity was emitted in exudates from fresh biomass of T. atroviride, Rhizopus sp. and Stachybotrys sp. Surfactant activity was also provoked by fresh conidia from T. atroviride and Stachybotrys sp. strains. Water repealing substances were emitted by cultures of P. expansum, T. atroviride and C. globosum strains. The metabolic state of the indoor fungal growth may influence emission of liquid soluble bioreactive metabolites into the indoor air.
Viable airborne pathogenic fungi represent a potential health hazard when exposing vulnerable persons in quantities exceeding their resilience. In this study, 284 indoor fungal isolates from a strain collection of indoor fungi were screened for pathogenic potential through the ability to grow in neutral pH at 37 °C and 30 °C. The isolates were collected from 20 locations including 14 problematic and 6 non-problematic ordinary buildings. Out of the screened isolates, 170 isolates were unable to grow at 37 °C, whereas 67 isolates growing at pH 7.2 at 37 °C were considered as potential opportunistic pathogens. Forty-seven isolates growing at 30 °C but not at 37 °C were considered as less likely pathogens. Out of these categories, 33 and 33 strains, respectively, were identified to the species level. The problematic buildings included known opportunistic pathogens: Aspergillus calidoustus, Trichoderma longibrachiatum, Rhizopus arrhizus and Paecilomyces variotii, as well as less likely pathogens: Aspergillus versicolor, Chaetomium cochliodes, Chaetomium globosum and Chaetomium rectangulare. Opportunistic pathogens such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger and Aspergillus tubingensis and less likely pathogens such as Aspergillus westerdijkiae, Chaetomium globosum and Dichotomopilus finlandicus were isolated both from ordinary and from problematic buildings. Aspergillus was the dominant, most diverse genus found during screening for potentially pathogenic isolates in the indoor strain collection. Studies on Aspergillus niger and Aspergillus calidodoustus revealed that tolerance to cleaning chemicals may contribute to the adaptation of Aspergillus species to indoor environments.
The genus Chaetomium is a frequently occurring fungal taxon world-wide. Chaetomium and Chaetomium-like species occur in indoor environments, where they can degrade cellulose-based building materials, thereby causing structural damage. Furthermore, several species of this genus may also cause adverse effects on human health. The aims of this research were to identify Chaetomium and Chaetomium-like strains isolated from indoor environments in Hungary and Finland, two geographically distant regions of Europe with drier and wetter continental climates, respectively, and to study their morphological and physiological properties, as well as their extracellular enzyme activities, thereby comparing the Chaetomium and Chaetomium-like species isolated from these two different regions of Europe and their properties. Chaetomium and Chaetomium-like strains were isolated from flats and offices in Hungary, as well as from schools, flats, and offices in Finland. Fragments of the translation elongation factor 1α (tef1α), the second largest subunit of RNA polymerase II (rpb2) and β-tubulin (tub2) genes, as well as the internal transcribed spacer (ITS) region of the ribosomal RNA gene cluster were sequenced, and phylogenetic analysis of the sequences performed. Morphological examinations were performed by stereomicroscopy and scanning electron microscopy. Thirty-one Chaetomium sp. strains (15 from Hungary and 16 from Finland) were examined during the study. The most abundant species was Ch. globosum in both countries. In Hungary, 13 strains were identified as Ch. globosum, 1 as Ch. cochliodes, and 1 as Ch. interruptum. In Finland, 10 strains were Ch. globosum, 2 strains were Ch. cochliodes, 2 were Ch. rectangulare, and 2 isolates (SZMC 26527, SZMC 26529) proved to be representatives of a yet undescribed phylogenetic species from the closely related genus Dichotomopilus, which we formally describe here as the new species Dichotomopilus finlandicus. Growth of the isolates was examined at different temperatures (4, 15, 20, 25, 30, 37, 35, 40, and 45 °C), while their extracellular enzyme production was determined spectrophotometrically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.