The feasibility to bioengineer a human tissue with an innate vascularization has been shown in vitro and the clinical setting. These results may open the door for the clinical application of various sophisticated bioartificial tissue substitutes and organ replacements.
Liver tissue that is functional and viable for several weeks in vitro represents an auspicious test system for basic and applied research. In this study, a coculture system for hepatocytes (HCs) and microvascular endothelial cells (mECs) was generated applying tissue-engineering techniques, establishing the basis for a new bioartificial liver in vitro model. Porcine mECs were seeded on a decellularized porcine jejunal segment with preserved vascular structures. Porcine HCs were seeded onto this vascularized scaffold, and the resulting coculture was maintained for 3 weeks in vitro. Tissue morphology and differentiation was monitored using histology and immunohistochemistry. Tissue metabolism was monitored using daily assessment of urea and lactate production. HC monolayer cultures served as controls. The 2-stage seeding procedure resulted in a 3-dimensional coculture system harboring HC cell clusters in multiple cell layers lining the generated mEC-seeded capillary structures. It was viable for 3 weeks, and HCs maintained their morphology and differentiation. Biochemical testing revealed stable metabolic activity of the tissue culture. In contrast, HCs cultured in monolayer showed morphological dedifferentiation and an unfavorable metabolic state. Our mEC-HC coculture represents a new approach toward a functional bioartificial liver-like tissue applicable as a test system for basic and applied research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.