A molecular understanding of the formation of solid phases from solution would be beneficial for various scientific fields. However, nucleation pathways are still not fully understood, whereby the case of iron (oxyhydr)oxides poses a prime example. We show that in the prenucleation regime, thermodynamically stable solute species up to a few nanometers in size are observed, which meet the definition of prenucleation clusters. Nucleation then is not governed by a critical size, but rather by the dynamics of the clusters that are forming at the distinct nucleation stages, based on the chemistry of the linkages within the clusters. This resolves a longstanding debate in the field of iron oxide nucleation, and the results may generally apply to oxides forming via hydrolysis and condensation. The (molecular) understanding of the chemical basis of phase separation is paramount for, e.g., tailoring size, shape and structure of novel nanocrystalline materials.
Abstract:We report on ferrocenyl-styrylruthenium conjugates Fc-C 6 H 4 -CH=CH-Ru(CO)(PiPr 3 ) 2 (L) in which the electron density at the alkenylruthenium site is modified by the variation of the coligand L [L = Cl, acetylacetonate (acac), hexafluoroacetylacetonate (hfac), or dipivaloylmethane (dpvm); Fc = ferrocenyl]. Crystallographic studies on three derivatives provide snapshots of the conformational degrees of freedom for rotation around the vinyl-phenylene and phenylene-ferrocenyl linkages. All four complexes undergo two consecutive, reversible one-electron oxidations, the potentials of which depend on the ligand L. On the basis of IR spectroelectrochemistry results, the first oxidations of the less electron-rich chlorido and hfac complexes are biased strongly towards the ferrocenyl site. However, the radical cation of the acac complex exists as two equilibrating
Iron(III) hydrolysis in the presence of chloride ions yields akaganéite, an iron oxyhydroxide mineral with a tunnel structure stabilized by the inclusion of chloride. Yet, the interactions of this anion with the iron oxyhydroxide precursors occurring during the hydrolysis process, as well as its mechanistic role during the formation of a solid phase are debated. Using a potentiometric titration assay in combination with a chloride ion-selective electrode, we have monitored the binding of chloride ions to nascent iron oxyhydroxides. Our results are consistent with earlier studies reporting that chloride ions bind to early occurring iron complexes. In addition, the data suggests that they are displaced with the onset of oxolation. Chloride ions in the akaganéite structure must be considered as remnants from the early stages of precipitation, as they do not influence the basic mechanism, or the kinetics of the hydrolysis reactions. The structure-directing role of chloride is based upon the early stages of the reaction. The presence of chloride in the tunnel-structure of akagenéite is due to a relatively strong binding to the earliest iron oxyhydroxide precursors, whereas it plays a rather passive role during the later stages of precipitation.
The interplay between polymers and inorganic minerals during the formation of solids is crucial for biomineralization and bio-inspired materials, and advanced material properties can be achieved with organic-inorganic composites. By studying the reaction mechanisms, basic questions on organic-inorganic interactions and their role during material formation can be answered, enabling more target-oriented strategies in future synthetic approaches. Here, we present a comprehensive study on the hydrolysis of iron(iii) in the presence of polyaspartic acid. For the basic investigation of the formation mechanism, a titration assay was used, complemented by microscopic techniques. The polymer is shown to promote precipitation in partly hydrolyzed reaction solutions at the very early stages of the reaction by facilitating iron(iii) hydrolysis. In unhydrolyzed solutions, no significant interactions between the polymer and the inorganic solutes can be observed. We demonstrate that the hydrolysis promotion by the polymer can be understood by facilitating oxolation in olation iron(iii) pre-nucleation clusters. We propose that the adsorption of olation pre-nucleation clusters on the polymer chains and the resulting loss in dynamics and increased proximity of the reactants is the key to this effect. The resulting composite material obtained from the hydrolysis in the presence of the polymer was investigated with additional analytical techniques, namely, scanning and transmission electron microscopies, light microscopy, atomic force microscopy, zeta potential measurements, dynamic light scattering, and thermogravimetric analyses. It consists of elastic, polydisperse nanospheres, ca. 50-200 nm in diameter, and aggregates thereof, exhibiting a high polymer and water content.
Hematite (α‐Fe2O3) is thermodynamically stable under ambient conditions, of vast geological importance, and widely used in applications, for example, as corrosion protection and as a pigment. It forms at elevated temperatures, whereas room‐temperature reactions typically yield metastable akaganéite or ferrihydrite. The mechanistic key changes underlying this observation were explored in the present study. The entropic contribution to the prenucleation hydrolysis reaction categorically implies the presence of prenucleation clusters (PNCs) as fundamental precursors. The formation of hematite is then due to a change in the reaction mechanism above approximately 50 °C, whereby the reaction limitation towards oxolation in phase‐separated clusters is overcome. A model that rationalizes the occurrence of hematite, akaganéite, and ferrihydrite based on the chemistry of olation PNCs is proposed. Supersaturation and the temperature dependence of olation and oxolation rates from monomeric precursors are irrelevant in this nonclassical mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.