Tumor necrosis factor-α (TNF-α) is the most potent proinflammatory cytokine in mammals. The degradation of TNF-α mRNA is critical for restricting TNF-α synthesis and involves a constitutive decay element (CDE) in the 3' UTR of the mRNA. Here, we demonstrate that the CDE folds into an RNA stem-loop motif that is specifically recognized by Roquin and Roquin2. Binding of Roquin initiates degradation of TNF-α mRNA and limits TNF-α production in macrophages. Roquin proteins promote mRNA degradation by recruiting the Ccr4-Caf1-Not deadenylase complex. CDE sequences are highly conserved and are found in more than 50 vertebrate mRNAs, many of which encode regulators of development and inflammation. In macrophages, CDE-containing mRNAs were identified as the primary targets of Roquin on a transcriptome-wide scale. Thus, Roquin proteins act broadly as mediators of mRNA deadenylation by recognizing a conserved class of stem-loop RNA degradation motifs.
Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi); mainly based on candidate gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and/or HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric open reading frames translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi coincided with DNA hypomethylation and gain in classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites since we found TINATs to be encoded in solitary long-terminal repeats of the LTR12 family, epigenetically repressed in virtually all normal cells. In contrast to genetic mutations, epigenetic changes are potentially reversible, which is deeming them an attractive target for cancer treatment. Inhibitors directed against DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) are used for the treatment of several haematopoietic malignancies1,2. However, despite their clinical use for several years, there is still a lack of knowledge regarding the mode of action3. Two previous studies on DNMTi in cancer cell lines reported the up-regulation of double stranded RNA (dsRNA) molecules originating from codogenic endogenous retroviruses (ERV) followed by an interferon response and the induction of viral defense genes4,5. However, it remains unclear how other classes of epigenetic drugs integrate into these findings and whether there are additional effects, potentially missed by candidate gene approaches. Here, we globally mapped DNMTi and HDACi-induced transcriptomic and epigenomic changes by using whole-genome profiling technologies (Supplementary Fig. 1 and Supplementary Table 1) and show that the vast majority of TSSs that transcriptionally responded towards epigenetic modulation were cryptic, currently non-annotated TSSs encoded in solitary long-terminal repeats (LTRs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.