Gas diffusion electrode (GDE) setups have very recently received increasing attention as a fast and straightforward tool for testing the oxygen reduction reaction (ORR) activity of surface area proton exchange membrane fuel cell (PEMFC) catalysts under more realistic reaction conditions. In the work presented here, we demonstrate that our recently introduced GDE setup is suitable for benchmarking the stability of PEMFC catalysts as well. Based on the obtained results, it is argued that the GDE setup offers inherent advantages for accelerated degradation tests (ADT) over classical three-electrode setups using liquid electrolytes. Instead of the solid-liquid electrolyte interface in classical electrochemical cells, in the GDE setup a realistic three-phase boundary of (humidified) reactant gas, proton exchange polymer (e.g. Nafion) and the electrocatalyst is formed. Therefore, the GDE setup not only allows accurate potential control but also independent control over the reactant atmosphere, humidity and temperature. In addition, the identical location transmission electron microscopy (IL-TEM) technique can easily be adopted into the setup, enabling a combination of benchmarking with mechanistic studies.
Hydrogen production from renewable resources and its reconversion into electricity are two important pillars toward a more sustainable energy use. The efficiency and viability of these technologies heavily rely on active and stable electrocatalysts. Basic research to develop superior electrocatalysts is commonly performed in conventional electrochemical setups such as a rotating disk electrode (RDE) configuration or H-type electrochemical cells. These experiments are easy to set up; however, there is a large gap to real electrochemical conversion devices such as fuel cells or electrolyzers. To close this gap, gas diffusion electrode (GDE) setups were recently presented as a straightforward technique for testing fuel cell catalysts under more realistic conditions. Here, we demonstrate for the first time a GDE setup for measuring the oxygen evolution reaction (OER) of catalysts for proton exchange membrane water electrolyzers (PEMWEs). Using a commercially available benchmark IrO 2 catalyst deposited on a carbon gas diffusion layer (GDL), it is shown that key parameters such as the OER mass activity, the activation energy, and even reasonable estimates of the exchange current density can be extracted in a realistic range of catalyst loadings for PEMWEs. It is furthermore shown that the carbon-based GDL is not only suitable for activity determination but also short-term stability testing. Alternatively, the GDL can be replaced by Ti-based porous transport layers (PTLs) typically used in commercial PEMWEs. Here a simple preparation is shown involving the hot-pressing of a Nafion membrane onto a drop-cast glycerol-based ink on a Ti-PTL.
A new approach for efficiently investigating the degradation of fuel cell catalysts under realistic conditions is presented combining accelerated stress tests (ASTs) in a gas diffusion electrode (GDE) setup with small angle X-ray scattering (SAXS). GDE setups were recently introduced as a novel testing tool combining the advantages of classical electrochemical cells with a three-electrode setup and membrane electrode assemblies (MEAs). SAXS characterization of the catalyst layer enables an evaluation of the particle size distribution of the catalyst and its changes upon applying an AST. The straight-forward approach not only enables stability testing of fuel cell catalysts in a comparative and reproducible manner, it also allows mechanistic insights into the degradation mechanism. Typical metal loadings for proton exchange membrane fuel cells (PEMFCs), i.e. 0.2 mgPt cm−2 geo, are applied in the GDE and the degradation of the overall (whole) catalyst layer is probed. For the first time, realistic degradation tests can be performed comparing a set of catalysts with several repeats within reasonable time. It is demonstrated that independent of the initial particle size in the pristine catalyst, for ASTs simulating load cycle conditions in a PEMFC, all catalysts degrade to a similar particle size distribution.
The synthesis of "surfactant-free" Pt nanoparticles (NPs) in alkaline ethylene glycol (EG), initially introduced in 2000, is of fundamental interest for the preparation of catalysts. Often a suspension of colloidal Pt NPs prepared by this method is stored and upon demand further processed to obtain supported catalysts such as PtÀC or PtÀAl 2 O 3 . In this study it is shown that in such colloidal suspensions in the presence of halides, e. g. from the metal precursor salt, leaching of Pt NPs takes place. Metal leaching poses a significant challenge for catalyst stability. However, if the reaction conditions are chosen appropriately, the here identified leaching process can be utilized to achieve particle growth by Ostwald ripening in a controlled manner. By changing the chemical nature of the metal precursor salt and variation of the reaction time, Pt NPs with a narrow size distribution between 1 to 4 nm are obtained without any need of surfactants. Subsequently, the obtained particles can be transferred into low-boiling organic solvents, which then allows for coating of deliberately chosen supports to prepare e. g. model catalyst which are tailored in terms of particle size and support material. The suitability of such materials for catalytic investigations is demonstrated by using CO oxidation as a model reaction and it is shown that the catalytic activity (surface normalized) depends on the size of Pt NPs under the applied reaction conditions.[a] S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.