Für den Erfolg von Online-Dating-Plattformen sind Matching-Algorithmen, die für passende, zielorientierte Partnervorschläge verantwortlich sind, von übergeordneter Bedeutung. Fokus dieser Arbeit ist die Betrachtung einer differenzierten Maximierung der wahrgenommenen Zufriedenheit der gesamten Population einer Dating App in Abhängigkeit von ihren Motiven zur Anmeldung auf dieser Plattform. Es wurden verschiedene Matching-Algorithmen implementiert und deren Erfolg verglichen. Es konnte festgestellt werden, dass ein Preferred Proposing (individualisierte Partnervorschläge) gegenüber zufälligen Partnervorschlägen zu einer maßgeblichen Steigerung der wahrgenommenen Zufriedenheit der Population führt. Weiterhin konnte die negative Auswirkung von Werbung und Fakeprofilen innerhalb der Plattform quantifiziert werden. Die stochastische agentenbasierte Simulation wurde mit AnyLogic PLE durchgeführt. Auf dieser Grundlage wurde das Matching-Verhalten der heterogenen Population visualisiert. Mit Hilfe dieser Visualisierung lässt sich das Verhalten der gesamten Population global sowie auf Ebene des Individuums präzise betrachten und nachvollziehen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.