Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.
Bioactive compounds were detected in crude extracts of the fungus, Calcarisporium sp. KF525, which was isolated from German Wadden Sea water samples. Purification of the metabolites from the extracts yielded the five known polyesters, 15G256α, α-2, β, β-2 and π (1–5), and five new derivatives thereof, named calcarides A–E (6–10). The chemical structures of the isolated compounds were elucidated on the basis of one- and two-dimensional NMR spectroscopy supported by UV and HRESIMS data. The compounds exhibited inhibitory activities against Staphylococcus epidermidis, Xanthomonas campestris and Propionibacterium acnes. As the antibacterial activities were highly specific with regard to compound and test strain, a tight structure-activity relationship is assumed.
The isolation and structure elucidation of the novel calcaripeptides A (1), B (2), and C (3) and studies on their biosynthetic origin are described. The calcaripeptides were identified from Calcarisporium sp. strain KF525, which was isolated from the German Wadden Sea. Compounds 1-3 are macrocyclic structures composed of a proline and a phenylalanine residue as well as a nonpeptidic substructure. Structure elucidation was achieved by applying one- and two-dimensional NMR spectroscopy supported by high-resolution mass spectrometry. X-ray crystallography was performed to determine the relative configuration of 1. The absolute configuration of 1 was assigned by HPLC of the amino acids after hydrolysis of the molecule and derivatization with chiral agents. Studies on the biosynthesis by feeding ¹³C-labeled substrates revealed that the nonpeptidic part of 1 originates from acetate and l-methionine. The involvement of a hybrid between a polyketide synthase and a nonribosomal peptide synthetase in the biosynthesis of the calcaripeptides is discussed.
The isolation and structure elucidation of malettinins A-C (1-3) along with the new malettinin E (4) are described. The compounds were produced by the fungus Cladosporium sp. strain KF501, which was isolated from the German Wadden Sea. The malettinins are built up of tropolone/dihydropyran ring structures linked to a furan ring. The structure elucidation of the isolated compounds was achieved by means of one-and two-dimensional NMR spectroscopy supported by mass and UV data. The relative configuration of 4 was determined on the basis of single-crystal X-ray diffraction analysis. 1-4 exhibited antibacterial and antifungal activities when profiled against Xanthomonas campestris and Trichophyton rubrum. The influence of the chemical structure of the furan ring and of configurational changes on biological activities was observed.
Abstract:As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.