The usefulness of eye-tracking tasks as potential biomarkers for motor or cognitive disease burden in Parkinson’s disease (PD) has been subject of debate for many years. Several studies suggest that the performance in the antisaccade task may be altered in patients with PD and associated with motor disease severity or executive dysfunction. In this meta-analysis, random effects models were used to synthesize the existing evidence on antisaccade error rates and latency in PD. Furthermore, meta-regressions were performed to assess the role of motor and cognitive disease severity, dopaminergic medication and methodological factors. Additionally, the impact of acute levodopa administration and activation of deep brain stimulation was evaluated in two separate sub-analyses.This meta-analysis confirms that antisaccade latency and error rate are significantly increased in PD. Disease duration, Unified Parkinson’s disease rating scale score and Hoehn and Yahr stage mediate the effect of PD on antisaccade latency with higher motor burden being associated with increased antisaccade latency.Acute administration of levodopa had no significant effects on antisaccade performance in a small number of eligible studies. Deep brain stimulation in the subthalamic nucleus, on the other hand, may alter the speed accuracy trade-off supporting an increase of impulsivity following deep brain stimulation in PD.According to the results of the meta-analysis, antisaccade latency may provide a potential marker for disease severity and progression in PD which needs further confirmation in longitudinal studies.
Considerable efforts have been made to evaluate different aspects of saccadic eye movements as potential biomarkers in FIG. 1. Findings during the levodopa (L-dopa) challenge test. A drug challenge test was arranged to characterize the nature of the patient's disabling dyskinesia. The patient was given 500 mg oral L-dopa and was monitored closely throughout one dosing cycle. The temporal and topographic pattern of her dyskinesia is characteristic of diphasic dyskinesia in advanced Parkinson's disease. Inhaled L-dopa was explored to address her wearing-off, but we also observed an improvement and shortened duration of her diphasic dyskinesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.