High-grade (HG) gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN) are rare but have a very poor prognosis and represent a severely understudied class of tumours. Molecular data for HG GEP-NEN are limited and treatment strategies for the carcinoma subgroup (HG GEP-NEC) are extrapolated from small-cell lung cancer (SCLC). After pathological re-evaluation, we analysed DNA from tumours and matched blood samples from 181 HG GEP-NEN patients; 152 neuroendocrine carcinomas (NEC) and 29 neuroendocrine tumours (NET G3). Based on sequencing of 360 cancer related genes, we assessed mutations and copy number alterations (CNA). For NEC, frequently mutated genes were TP53 (64%), APC (28%), KRAS (22%) and BRAF (20%). RB1 was only mutated in 14%, but CNAs affecting RB1 were seen in 34%. Other frequent copy number losses were ARID1A (35%), ESR1 (25%) and ATM (31%). Frequent amplifications/gains were found in MYC (51%) and KDM5A (45%). While these molecular features had limited similarities with SCLC, we found potentially targetable alterations in 66% of the NEC samples. Mutations and CNA varied according to primary tumour site with BRAF mutations mainly seen in colon (49%), and FBXW7 mutations mainly seen in rectal cancers (25%). 8/152 (5.3%) NEC were microsatellite instable (MSI). NET G3 had frequent mutations in MEN1 (21%), ATRX (17%), DAXX, SETD2 and TP53 (each 14%). We show molecular differences in HG GEP-NEN, related to morphological differentiation and site of origin. Limited similarities to SCLC and a high fraction of targetable alterations indicates a high potential for better personalized treatments.
PurposeTo present data from an interim analysis of a Phase II trial designed to determine the feasibility, safety, and efficacy of individualising treatment based on renal dosimetry, by giving as many cycles as possible within a maximum renal biologically effective dose (BED).MethodTreatment was given with repeated cycles of 7.4 GBq 177Lu-DOTATATE at 8-12-week intervals. Detailed dosimetry was performed in all patients after each cycle using a hybrid method (SPECT + planar imaging). All patients received treatment up to a renal BED of 27 ± 2 Gy (α/β = 2.6 Gy) (Step 1). Selected patients were offered further treatment up to a renal BED of 40 ± 2 Gy (Step 2). Renal function was followed by estimation and measurement of the glomerular filtration rate (GFR).ResultsFifty-one patients were included in the present analysis. Among the patients who received treatment as planned, the median number of cycles in Step 1 was 5 (range 3-7), and for those who completed Step 2 it was 7 (range 5-8); 73% were able to receive >4 cycles. Although GFR decreased in most patients after the completion of treatment, no grade 3-4 toxicity was observed. Patients with a reduced baseline GFR seemed to have an increased risk of GFR decline. Five patients received treatment in Step 2, none of whom exhibited a significant reduction in renal function.ConclusionsIndividualising PRRT using renal dosimetry seems feasible and safe and leads to an increased number of cycles in the majority of patients. The trial will continue as planned.Electronic supplementary materialThe online version of this article (doi:10.1007/s00259-017-3678-4) contains supplementary material, which is available to authorized users.
PurposePeptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment.MethodsThe study included 51 patients with an advanced neuroendocrine tumour who received 177Lu-DOTATATE treatment during 2006 – 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 – 8.2 GBq) was given at intervals of 6 – 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated.ResultsA significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of 177Lu in the whole body (range 0.89 – 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53).ConclusionPatients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during 177Lu-DOTATATE treatment. The study confirms the tolerability of PRRT in patients with an advanced neuroendocrine tumour but indicates that patients with inferior renal function are at risk of being exposed to higher absorbed doses to normal tissue on treatment.
BackgroundRecently, 177Lu-dotatate therapy for neuroendocrine tumours has received regulatory approval. Dosimetry can be used to optimize treatment on an individual basis, but there is no international consensus as to how it should be done.The aim of this study is to determine a feasible and accurate dosimetry method to guide individualized peptide receptor radionuclide therapy (PRRT) for patients with neuroendocrine tumours.As part of a clinical trial on 177Lu-dotatate therapy, renal dosimetry was performed for all patients in each treatment cycle, using a hybrid planar-SPECT/CT method. In the present study, we use the image data acquired from 22 patients and 119 cycles and define a set of alternative treatment planning strategies, each representing a simplification in terms of image acquisition and dosimetric calculations. The results from the simplified strategies are compared to the results from the protocol-prescribed hybrid planar-SPECT/CT-based method by analysing differences both in per-cycle and total cumulative absorbed dose (AD) analyses.ResultsIn general, the SPECT-based methods gave results that were largely consistent with the protocol-specified hybrid method, both in the per-cycle and cumulative AD analyses. Notably, performing one SPECT/CT per cycle at 96 h yielded ADs that were very similar to the protocol method. The methods using planar dosimetry resulted in larger variations, as expected, while giving 4 cycles to all patients resulted in the largest inter-individual differences in cumulative AD.ConclusionsPerforming one SPECT/CT at 96 h in every treatment cycle gives sufficiently reliable dosimetric results to base individualized treatment planning on, with a reasonable demand on resources.Electronic supplementary materialThe online version of this article (10.1186/s40658-018-0210-2) contains supplementary material, which is available to authorized users.
Objective Intravoxel incoherent motion (IVIM) shows great potential in many applications, e.g., tumor tissue characterization. To reduce image-quality demands, various IVIM analysis approaches restricted to the diffusion coefficient (D) and the perfusion fraction (f) are increasingly being employed. In this work, the impact of estimation approach for D and f is studied. Materials and methods Four approaches for estimating D and f were studied: segmented IVIM fitting, least-squares fitting of a simplified IVIM model (sIVIM), and Bayesian fitting of the sIVIM model using marginal posterior modes or posterior means. The estimation approaches were evaluated in terms of bias and variability as well as ability for differentiation between tumor and healthy liver tissue using simulated and in vivo data. Results All estimation approaches had similar variability and ability for differentiation and negligible bias, except for the Bayesian posterior mean of f, which was substantially biased. Combined use of D and f improved tumor-to-liver tissue differentiation compared with using D or f separately. Discussion The similar performance between estimation approaches renders the segmented one preferable due to lower numerical complexity and shorter computational time. Superior tissue differentiation when combining D and f suggests complementary biologically relevant information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.