This prognostic study evaluates whether psychosis transition can be predicted in patients with clinical high-risk syndromes or recent-onset depression by multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging, and polygenic risk scores for schizophrenia.
Reliably diagnosing autism spectrum disorders (ASD) in adulthood poses a challenge to clinicians due to the absence of specific diagnostic markers. This study investigated the potential of interpersonal synchrony (IPS), which has been found to be reduced in ASD, to augment the diagnostic process. IPS was objectively assessed in videos of diagnostic interviews in a representative referral population from two specialized autism outpatient clinics. In contrast to the current screening tools that could not reliably differentiate, we found a significant reduction of IPS in interactions with individuals later diagnosed with ASD (n = 16) as opposed to those not receiving a diagnosis (n = 23). While these findings need to be validated in larger samples, they nevertheless underline the potential of digitally-enhanced diagnostic processes for ASD.
Exchange of thoughts by means of expressive speech is fundamental to human communication. However, the neuronal basis of real-life communication in general, and of verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was to establish an approach for exploring the neuronal processes related to cognitive “idea” units (IUs) in conditions of non-experimental speech production. We investigated whether such units corresponding to single, coherent chunks of speech with syntactically-defined borders, are useful to unravel the neuronal mechanisms underlying real-world human cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed non-experimental, daily hospital conversations, identified IUs in transcriptions of the patients' speech, classified the obtained IUs according to a previously-proposed taxonomy focusing on memory content, and investigated the underlying neuronal activity. In each of our three subjects, we were able to collect a large number of IUs which could be assigned to different functional IU subclasses with a high inter-rater agreement. Robust IU-onset-related changes in spectral magnitude could be observed in high gamma frequencies (70–150 Hz) on the inferior lateral convexity and in the superior temporal cortex regardless of the IU content. A comparison of the topography of these responses with mouth motor and speech areas identified by electrocortical stimulation showed that IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity: 44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis of ECoG recordings during non-experimental communication thus elicits topographically- and functionally-specific effects. We conclude that segmentation of spontaneous real-world speech in linguistically-motivated units is a promising strategy for elucidating the neuronal basis of mental processing during non-experimental communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.