Background and aims Plant breeding activities shape the rhizosphere microbiome but less is known about the relationship of both with the seed microbiome. We analyzed the composition of bacterial communities of seeds and rhizospheres of Styrian oil pumpkin genotypes in comparison to bulk soil to elucidate specific microbial signatures to support a concept involving plant-microbe interactions in breeding strategies. Methods The seed and rhizosphere microbiomes of 14 genotypes of oilseed pumpkin and relatives were analyzed using a 16S rRNA gene amplicon sequencing approach, which was assessed by bioinformatics and statistical methods. Results All analyzed microhabitats were characterized by diverse bacterial communities, but the relative proportions of phyla and the overall diversity was different. Seed microbiomes were characterized by the lowest diversity and dominant members of Enterobacteriaceae including potential pathogens (Erwinia, Pectobacterium). Potential plant-beneficial bacteria like Lysobacter, Paenibacillus and Lactococcus contributed to the microbial communities in significant abundances. Interestingly, strong genotype-specific microbiomes were detected for seeds but not for the rhizospheres. Conclusions Our study indicates a strong impact of the Cucurbita pepo genotype on the composition of the seed microbiome. This should be considered in breeding of new cultivars that are more capable of exploiting beneficial indigenous microbial communities.
Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega-environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000-II) were evaluated for maturity-related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean-growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe.
Pumpkin (Cucurbita pepo L.) seed oil is a common salad oil which is produced in Slovenia, Hungary and the southern parts of Austria. It is dark green and has a high content of free fatty acids. The seed itself can be eaten. Due to its colour and the foam formation, the oil cannot be used for cooking. The content of vitamin E, especially gamma-tocopherol, is very high. The oil content of the pumpkin seed is about 50%. The variability in the oil content is very high resulting from a broad genetic diversity. Thus a breeding programme for increasing the oil productivity is very promising. The four dominant fatty acids are palmitic, stearic, oleic and linoleic acids. These four fatty acids make up 98 +/- 0.13% of the total amount of fatty acids, others being found at levels well below 0.5%.
Pumpkin (Cucurbita pepo L.) seed oil is a common salad oil which is produced in the southern parts of Austria, Slovenia and Hungary. It is dark green and has a high content of free fatty acids. Due to its colour, the oil cannot be used for cooking. The content of vitamin E, especially gamma-tocopherol, is very high. The oil content of the pumpkin seed is about 50%. The seed itself can be eaten. Therefore a pumpkin variety with high vitamin E content is desirable. The aim of this work was to find a variety of Cucurbita pepo which has a high oil yield and a high vitamin E content. A total of 100 breeding lines were tested for their tocopherol content. The tocopherols and tocotrienols are extracted with hexane and analysed by NP-HPLC/FLD with hexane/dioxan (96/4) as eluent, with fluorescence detection at 292/335 nm. The gamma-tocopherol content, which is about 5-10 times as much as that of alpha-tocopherol varies over a broad range (41-620 mg/kg dry pumpkin seeds). Beta- and delta-tocopherol are found at low levels.
Faba bean (Vicia faba L.) is a cool season grain legume whose acreage has constantly declined in traditional producer countries as it has been replaced by more productive cereal crops. However, faba bean is still considered to have great potential as rainfed crop. In order to satisfy the renewed interest in faba bean cultivation yield stability should be improved by exploiting different germplasm types and sowing seasons.In order to understand of genotype by environment interactions and to compare cultivar performance over years and locations a spring faba bean network was established with twenty cultivars grown over three crop seasons at thirteen contrasting locations covering most of Europe. Analysis was performed by heritability-adjusted genotype plus genotype × environment interaction (HA-GGE) biplot analysis. HA-GGE biplot analyses identified that the effect of genotype by environment interaction was higher than the effect of genotypes, allowing identification of three mega-environments, namely Continental, Oceanic, and Mediterranean, in which cultivars performed differently. This supports the need for specific breeding for each specific geoclimatic area. Espresso was the highest yielding cultivar, being also highly stable over the Oceanic and Continental mega-environments. Cultivars Fuego, Hobbit and SR-1060 had also good yield but with a moderate unstability in both Oceanic and Continental mega-environments. Baraca and Alameda yielded poorly at all environments although were the best yielders at Mediterranean locations. Environments as Sumperk and Premesques were identified as the best core test locations for Continental and Oceanic mega-enviroments, respectively, being the locations in which best genotypes could be most easily identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.