Chimera states are complex spatio-temporal patterns that consist of coexisting domains of spatially coherent and incoherent dynamics. This counterintuitive phenomenon was first observed in systems of identical oscillators with symmetric coupling topology. Can one overcome these limitations? To address this question, we discuss the robustness of chimera states in networks of FitzHugh-Nagumo oscillators. Considering networks of inhomogeneous elements with regular coupling topology, and networks of identical elements with irregular coupling topologies, we demonstrate that chimera states are robust with respect to these perturbations and analyze their properties as the inhomogeneities increase. We find that modifications of coupling topologies cause qualitative changes of chimera states: additional random links induce a shift of the stability regions in the system parameter plane, gaps in the connectivity matrix result in a change of the multiplicity of incoherent regions of the chimera state, and hierarchical geometry in the connectivity matrix induces nested coherent and incoherent regions.
We have identified the occurrence of chimera states for various coupling schemes in networks of two-dimensional and three-dimensional Hindmarsh-Rose oscillators, which represent realistic models of neuronal ensembles. This result, together with recent studies on multiple chimera states in nonlocally coupled FitzHugh-Nagumo oscillators, provide strong evidence that the phenomenon of chimeras may indeed be relevant in neuroscience applications. Moreover, our work verifies the existence of chimera states in coupled bistable elements, whereas to date chimeras were known to arise in models possessing a single stable limit cycle. Finally, we have identified an interesting class of mixed oscillatory states, in which desynchronized neurons are uniformly interspersed among the remaining ones that are either stationary or oscillate in synchronized motion.
Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ρ, we also employ other measures of coherence, such as the chimera-like χ and metastability λ indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks.
Type of publicationArticle (peer-reviewed) Access to the full text of the published version may require a subscription. Rights
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.