We conducted a laboratory-based observational study where pairs of people performed search tasks communicating verbally. Examination of the discourse allowed commonly used interactions to be identi ed for Spoken Conversational Search (SCS). We compared the interactions to existing models of search behaviour. We nd that SCS is more complex and interactive than traditional search. is work enhances our understanding of di erent search behaviours and proposes research opportunities for an audio-only search system. Future work will focus on creating models of search behaviour for SCS and evaluating these against actual SCS systems.
Understanding and characterizing how people interact in informationseeking conversations is crucial in developing conversational search systems. In this paper, we introduce a new dataset designed for this purpose and use it to analyze information-seeking conversations by user intent distribution, co-occurrence, and flow patterns. The MSDialog dataset is a labeled dialog dataset of question answering (QA) interactions between information seekers and providers from an online forum on Microsoft products. The dataset contains more than 2,000 multi-turn QA dialogs with 10,000 utterances that are annotated with user intent on the utterance level. Annotations were done using crowdsourcing. With MSDialog, we find some highly recurring patterns in user intent during an information-seeking process. They could be useful for designing conversational search systems. We will make our dataset freely available to encourage exploration of information-seeking conversation models.
Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in informationseeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.
Conversation is the natural mode for information exchange in daily life, a spoken conversational interaction for search input and output is a logical format for information seeking. However, the conceptualisation of user-system interactions or information exchange in spoken conversational search (SCS) has not been explored. The first step in conceptualising SCS is to understand the conversational moves used in an audio-only communication channel for search. This paper explores conversational actions for the task of search. We define a qualitative methodology for creating conversational datasets, propose analysis protocols, and develop the SCSdata. Furthermore, we use the SCSdata to create the first annotation schema for SCS: the SCoSAS, enabling us to investigate interactivity in SCS. We further establish that SCS needs to incorporate interactivity and pro-activity to overcome the complexity that the information seeking process in an audio-only channel poses. In summary, this exploratory study unpacks the breadth of SCS. Our results highlight the need for integrating discourse in future SCS models and contributes the advancement in the formalisation of SCS models and the design of SCS systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.