The snake venom rhodocytin has been reported to bind to integrin alpha2beta1 and glycoprotein (GP) Ibalpha on platelets, but it is also able to induce activation independent of the 2 receptors and of GPVI. Using rhodocytin affinity chromatography, we have identified a novel C-type lectin receptor, CLEC-2, in platelets that confers signaling responses to rhodocytin when expressed in a cell line. CLEC-2 has a single tyrosine residue in a YXXL motif in its cytosolic tail, which undergoes tyrosine phosphorylation upon platelet activation by rhodocytin or an antibody to CLEC-2, but not to collagen, thrombin receptor agonist peptide (TRAP), or convulxin. Tyrosine phosphorylation of CLEC-2 and other signaling proteins by rhodocytin is inhibited by the Src family kinase inhibitor PP2. Further, activation of murine platelets by rhodocytin is abolished in the absence of Syk and PLCgamma2, and partially reduced in the absence of LAT, SLP-76, and Vav1/Vav3. These findings define a novel signaling pathway in platelets whereby activation of CLEC-2 by rhodocytin leads to tyrosine phosphorylation of its cytosolic tail, binding of Syk and initiation of downstream tyrosine phosphorylation events, and activation of PLCgamma2. CLEC-2 is the first C-type lectin receptor to be found on platelets which signals through this novel pathway.
The urokinase receptor (uPAR) is linked to cellular migration through its capacity to promote pericellular proteolysis, regulate integrin function, and mediate cell signaling in response to urokinase (uPA) binding. The mechanisms for these activities remain incompletely defined, although uPAR was recently identified as a cis-acting ligand for the 2 integrin CD11b/CD18 (Mac-1). Here we show that a major 1 integrin partner for uPAR/uPA signaling is ␣3. In uPAR-transfected 293 cells uPAR complexed (Ͼ90%) with ␣31 and antibodies to ␣3 blocked uPAR-dependent vitronectin (Vn) adhesion. Soluble uPAR bound to recombinant ␣31 in a uPA-dependent manner (K d Ͻ 20 nM) and binding was blocked by a 17-mer ␣31 integrin peptide (␣325) homologous to the CD11b uPARbinding site. uPAR colocalized with ␣31 in MDA-MB-231 cells and uPA (1 nM) enhanced spreading and focal adhesion kinase phosphorylation on fibronectin (Fn) or collagen type I (Col) in a pertussis toxin-and ␣325-sensitive manner. A critical role of ␣31 in uPA signaling was verified by studies of epithelial cells from ␣3-deficient mice. Thus, uPAR preferentially complexes with ␣31, promoting direct (Vn) and indirect (Fn, Col) pathways of cell adhesion, the latter a heterotrimeric G proteindependent mechanism of signaling between ␣31 and other 1 integrins.
Damage to the integrity of the vessel wall leads to exposure of the subendothelial extracellular matrix (ECM), triggering platelet activation and aggregation. This process is essential for primary hemosta-sis but it may also lead to arterial thrombosis. Although the mechanisms underlying platelet activation on the ECM are well explored, it is less clear which receptors mediate cellular activation in a growing thrombus. Here we studied the role of the recently identified C-type lectin-like receptor 2 (CLEC-2) in this process. We show that anti-CLEC-2 antibody treatment of mice leads to complete and highly specific loss of CLEC-2 in circulating plate-lets for several days. CLEC-2-deficient platelets displayed normal adhesion under flow, but subsequent aggregate formation was severely defective in vitro and in vivo. As a consequence, CLEC-2 deficiency was associated with increased bleeding times and profound protection from occlusive arterial thrombus formation. These results reveal an essential function of CLEC-2 in hemostasis and thrombosis. (Blood. 2009;114:3464-3472)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.