Reliable prediction of flooding conditions is needed for sizing and operating packed extraction columns. Due to the complex interplay of physicochemical properties, operational parameters and the packing-specific properties, it is challenging to develop accurate semi-empirical or rigorous models with a high validity range. State of the art models may therefore fail to predict flooding accurately. To overcome this problem, a data-driven model based on Gaussian processes is developed to predict flooding for packed liquid-liquid and high-pressure extraction columns. The optimized Gaussian process for the liquid-liquid extraction column results in an average absolute relative error (AARE) of 15.23 %, whereas the algorithm for the high-pressure extraction column results in an AARE of 13.68 %. Both algorithms can predict flooding curves for different packing geometries and chemical systems precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.