Background: Listeria monocytogenes CdaA is an essential diadenylate cyclase. Results: CdaA activity depends on manganese and cobalt ions. Conclusion: CdaA has an unusual requirement for metal cofactors. Significance: Characterization of essential enzymes is important for developing novel antibiotics.
Thiamin diphosphate (ThDP)-dependent enzymes play vital roles in cellular metabolism in all kingdoms of life. In previous kinetic and structural studies, a communication between the active centers in terms of a negative cooperativity had been suggested for some but not all ThDP enzymes, which typically operate as functional dimers. To further underline this hypothesis and to test its universality, we investigated the binding of substrate analogue methyl acetylphosphonate (MAP) to three different ThDP-dependent enzymes acting on substrate pyruvate, namely, the Escherichia coli E1 component of the pyruvate dehydrogenase complex, E. coli acetohydroxyacid synthase isoenzyme I, and the Lactobacillus plantarum pyruvate oxidase using isothermal titration calorimetry. The results unambiguously show for all three enzymes studied that only one active center of the functional dimers accomplishes covalent binding of the substrate analogue, supporting the proposed alternating sites reactivity as a common feature of all ThDP enzymes and resolving the recent controversy in the field.
Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the Nterminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results http://www.jbc.org/cgi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.