Abstract. A probabilistic similarity query over uncertain data assigns to each uncertain database object o a probability indicating the likelihood that o meets the query predicate. In this paper, we formalize the notion of uncertain time series and introduce two novel and important types of probabilistic range queries over uncertain time series. Furthermore, we propose an original approximate representation of uncertain time series that can be used to efficiently support both new query types by upper and lower bounding the Euclidean distance.
Abstract. Similarity search in time series data is required in many application fields. The most prominent work has focused on similarity search considering either complete time series or similarity according to subsequences of time series. For many domains like financial analysis, medicine, environmental meteorology, or environmental observation, the detection of temporal dependencies between different time series is very important. In contrast to traditional approaches which consider the course of the time series for the purpose of matching, coarse trend information about the time series could be sufficient to solve the above mentioned problem. In particular, temporal dependencies in time series can be detected by determining the points of time at which the time series exceeds a specific threshold. In this paper, we introduce the novel concept of threshold queries in time series databases which report those time series exceeding a user-defined query threshold at similar time frames compared to the query time series. We present a new efficient access method which uses the fact that only partial information of the time series is required at query time. The performance of our solution is demonstrated by an extensive experimental evaluation on real world and artificial time series data.
Similarity search in time series data is an active area of research. In this paper, we introduce the novel concept of threshold-similarity queries in time series databases which report those time series exceeding a user-defined query threshold at similar time frames compared to the query time series. In addition, we present a new data structure to support threshold similarity queries efficiently. The performance of our solution is demonstrated by an extensive experimental evaluation.
The analysis of time series data is of capital importance for pharmacogenomics since the experimental evaluations are usually based on observations of time dependent reactions or behaviors of organisms. Thus, data mining in time series databases is an important instrument towards understanding the effects of drugs on individuals. However, the complex nature of time series poses a big challenge for effective and efficient data mining. In this paper, we focus on the detection of temporal dependencies between different time series: we introduce the novel analysis concept of threshold queries and its semi-supervised extension which supports the parameter setting by applying training datasets. Basically, threshold queries report those time series exceeding an user-defined query threshold at certain time frames. For semi-supervised threshold queries the corresponding threshold is automatically adjusted to the characteristics of the data set, the training dataset, respectively. In order to support threshold queries efficiently, we present a new efficient access method which uses the fact that only partial information of the time series is required at query time. In an extensive experimental evaluation we demonstrate the performance of our solution and show that semi-supervised threshold queries applied to gene expression data are very worthwhile.
Abstract. Effective similarity search in multi-media time series such as video or audio sequences is important for content-based multi-media retrieval applications. We propose a framework that extracts a sequence of local features from large multi-media time series that reflect the characteristics of the complex structured time series more accurately than global features. In addition, we propose a set of suitable local features that can be derived by our framework. These features are scanned from a time series amplitude-levelwise and are called amplitude-level features. Our experimental evaluation shows that our method models the intuitive similarity of multi-media time series better than existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.