Abstract:This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV's log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents.
Small-scale portable rainfall simulators are an essential research tool for investigating the process dynamics of soil erosion and surface hydrology. There is no standardisation of rainfall simulation and such rainfall simulators differ in design, rainfall intensities, rain spectra and research questions, which impede drawing a meaningful comparison between results. Nevertheless, these data become progressively important for soil erosion assessment and therefore, the basis for decision-makers in application-oriented erosion protection.
This study presents a computer vision application of the structure from motion (SfM) technique in three dimensional high resolution gully monitoring in southern Morocco. Due to impractical use of terrestrial Light Detection and Ranging (LiDAR) in difficult to access gully systems, the inexpensive SfM is a promising tool for analyzing and monitoring soil loss, gully head retreat and plunge pool development following heavy rain events. Objects with known dimensions were placed around the gully scenes for scaling purposes as a workaround for ground control point (GCP) placement. Additionally, the free scaling with objects was compared to terrestrial laser scanner (TLS) data in a field laboratory in Germany. Results of the latter showed discrepancies of 5.6% in volume difference for erosion and 1.7% for accumulation between SfM and TLS. In the Moroccan research area soil loss varied between 0.58 t in an 18.65 m
Balhimycin, a vancomycin-type antibiotic from Amycolatopsis mediterranei, contains the unusual amino acid (S)-3,5-dihydroxyphenylglycine (Dpg), with an acetate-derived carbon backbone. After sequence analysis of the biosynthetic gene cluster, one gene, dpgA, for a predicted polyketide synthase (PKS) was identified, sharing 20 -30% identity with plant chalcone synthases. Inactivation of dpgA resulted in loss of balhimycin production, and restoration was achieved by supplementation with 3,5-dihydroxyphenylacetic acid, which is both a possible product of a PKS reaction and a likely precursor of Dpg. Enzyme assays with the protein expressed in Streptomyces lividans showed that this PKS uses only malonyl-CoA as substrate to synthesize 3,5-dihydroxyphenylacetic acid. The PKS gene is organized in an operon-like structure with three downstream genes that are similar to enoyl-CoA-hydratase genes and a dehydrogenase gene. The heterologous co-expression of all four genes led to accumulation of 3,5-dihydroxyphenylglyoxylic acid. Therefore, we now propose a reaction sequence. The final step in the pathway to Dpg is a transamination. A predicted transaminase gene was inactivated, resulting in abolished antibiotic production and accumulation of 3,5-dihydroxyphenylglyoxylic acid. Interestingly, restoration was only possible by simultaneous supplementation with (S)-3,5-dihydroxyphenylglycine and (S)-4-hydroxyphenylglycine, indicating that the transaminase is essential for the formation of both amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.