New antibacterial strategies are required in view of the increasing resistance of bacteria to antibiotics. One promising technique involves the photodynamic inactivation of bacteria. Upon exposure to light, a photosensitizer in bacteria can generate singlet oxygen, which oxidizes proteins or lipids, leading to bacteria death. To elucidate the oxidative processes that occur during killing of bacteria, Staphylococcus aureus was incubated with a standard photosensitizer, and the generation and decay of singlet oxygen was detected directly by its luminescence at 1,270 nm. At low bacterial concentrations, the time-resolved luminescence of singlet oxygen showed a decay time of 6 ؎ 2 s, which is an intermediate time for singlet oxygen decay in phospholipids of membranes (14 ؎ 2 s) and in the surrounding water (3.5 ؎ 0.5 s). Obviously, at low bacterial concentrations, singlet oxygen had sufficient access to water outside of S. aureus by diffusion. Thus, singlet oxygen seems to be generated in the outer cell wall areas or in adjacent cytoplasmic membranes of S. aureus. In addition, the detection of singlet oxygen luminescence can be used as a sensor of intracellular oxygen concentration. When singlet oxygen luminescence was measured at higher bacterial concentrations, the decay time increased significantly, up to Ϸ40 s, because of oxygen depletion at these concentrations. This observation is an important indicator that oxygen supply is a crucial factor in the efficacy of photodynamic inactivation of bacteria, and will be of particular significance should this approach be used against multiresistant bacteria.luminescence ͉ oxygen depletion ͉ Staphylococcus aureus
UVA light (320-400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), beta-nicotinamide adenine dinucleotide (NAD), and beta-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (PhiDelta = 0.54 +/- 0.07), FMN (PhiDelta = 0.51 +/- 0.07), and FAD (PhiDelta = 0.07 +/- 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).
UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation.
Singlet oxygen was generated by energy transfer from the photoexcited sensitizer, Photofrin or 9-acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn), to molecular oxygen. Singlet oxygen was detected time-resolved by its luminescence at 1270 nm in an environment of increasing complexity, water (H2O), pure phosphatidylcholine, phosphatidylcholine in water (lipid suspensions), and aqueous suspensions of living cells. In the case of the lipid suspensions, the sensitizers accumulated in the lipids, whereas the localizations in the cells are the membranes containing phosphatidylcholine. By use of Photofrin, the measured luminescence decay times of singlet oxygen were 3.5 +/- 0.5 micros in water, 14 +/- 2 micros in lipid, 9 +/- 2 micros in aqueous suspensions of lipid droplets, and 10 +/- 3 micros in aqueous suspensions of human colonic cancer cells (HT29). The decay time in cell suspensions was much longer than in water and was comparable to the value in suspensions of phosphatidylcholine. That luminescence signal might be attributed to singlet oxygen decaying in the lipid areas of cellular membranes. The measured luminescence decay times of singlet oxygen excited by ATMPn in pure lipid and lipid suspensions were the same within the experimental error as for Photofrin. In contrast to experiments with Photofrin, the decay time in aqueous suspension of HT29 cells was 6 +/- 2 micros when using ATMPn.
The spectral dynamics of individual bacterial light-harvesting-2 pigment-protein complexes have been studied at 1.4 K. The data provided the spectral diffusion kernel of the optical transitions of the embedded B800 bacteriochlorophyll a pigments. This kernel can be described by either a single Gaussian function or a superposition of Gaussian functions. Moreover, we found that the chromophores interact with two classes of TLSs that can be distinguished by their distance from the chromophore and are most likely located outside (class 1) and inside (class 2) the protein matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.