[1] Recent studies in lakes have shown evidence for a strong influence of shear-induced stratification on mixing in turbulent bottom boundary layers (BBLs) on sloping topography. These observations suggest that the periodic near-bottom shear resulting from internal wave motions may lead to alternating periods of gravitationally stable and unstable stratification in the BBL with relevant implications for turbulence and mixing in the entire basin. The impact of these processes for basin-scale mixing is investigated here in a three-dimensional processes-oriented modeling study, using a well-investigated system (Lake Alpnach, Switzerland) as an example. Consistent with available observations, our results indicate that the BBL becomes gravitationally unstable in areas with upslope flow, covering a substantial fraction of the total bottom area of the lake. While near-bottom convection associated with the unstable stratification in these areas results in strong turbulence, its contribution to net mixing is negligible since the BBL is already well mixed. Conversely, in areas with downslope flow the near-bottom shear generates stable stratification, leading to a suppression of turbulence but also to larger mixing rates due to an enhanced mixing efficiency. Overall, BBL mixing is found to dominate basin-scale mixing. These mechanisms are likely to be important for a large class of stratified natural waters, in which boundary layer mixing is energized by periodic internal waves or basin-scale motions.
Stratification and destratification processes in a tidally energetic, weakly stratified inlet in the Wadden Sea (south eastern North Sea) are investigated in this modeling study. Observations of current velocity and vertical density structure show strain-induced periodic stratification for the southern shoal of the tidal channel. In contrast to this, in the nearby central region of the channel, increased stratification is already observed directly after full flood. To investigate the processes leading to this different behavior, a nested model system using GETM is set up and successfully validated against field data. The simulated density development along a cross section that includes both stations shows that cross-channel stratification is strongly increasing during flood, such that available potential energy is released in the deeper part of the channel during flood. An analysis of the potential energy anomaly budget confirms that the early onset of vertical stratification during flood at the deeper station is mainly controlled by the stratifying cross-channel straining of the density field. In contrast to this, in the shallow part of the channel, the relatively weak crosschannel straining is balanced by along-channel straining and vertical mixing. An idealized analytical model confirms the following hypothesis: The laterally convergent flood current advecting laterally stratified water masses from the shallow and wide ebb tidal delta to the deep and narrow tidal channel has the tendency to substantially increase cross-channel density gradients in the tidal channel. This process leads to stratification during flood.
Cross-channel transect measurements of microstructure and velocity in a well-mixed and curved tidal inlet in the German Wadden Sea show the occurrence of significant late flood stratification. This stratification is found to be a result of lateral straining. This study observes a strong single-cell lateral circulation, which is strongly pronounced at late flood and absent during most of ebb. This tidal asymmetry is caused by a systematic interplay between centrifugal forcing and the lateral baroclinic pressure gradient. During flood a positive feedback between the terms generates strong lateral circulation, whereas during ebb a negative feedback leads to a suppression of the cross-channel exchange. A theoretical framework based on vorticity is developed, which allows lateral and longitudinal circulation to be studied in a consistent way. With this framework it is possible to show that the tidal asymmetry of the lateral flow is a major driver of residual longitudinal estuarine circulation, here identified with the tidally averaged across-channel vorticity component.
In numerous studies, the functioning of estuarine circulation has been investigated, under idealized conditions, by means of numerical models. This has led to a deep understanding of the theory of estuarine residual flows. However, the question as to how estuarine circulation is established in real estuaries, in response to their topographical and forcing characteristics, remains. The present study uses a highly accurate three‐dimensional numerical model simulation to calculate estuarine circulation in a curved, tidally energetic channel of the Wadden Sea in the southeastern North Sea. The specific momentum balance of this curved inlet shows an approximate pressure‐gradient—frictional balance in the longitudinal direction and a pressure gradient—centrifugal balance in the lateral direction. A local Wedderburn number is introduced to quantify the varying contributions of wind stress and gravitational forcing on estuarine circulation. A total exchange flow (TEF) analysis is combined with an analysis of the intensity of the vertical overturning circulation to understand the dynamics of estuarine exchange in this inlet. The results show how established forcing mechanisms of residual circulation, such as horizontal buoyancy gradients and wind stress, act in a combined way. In general, the strength of estuarine circulation is always positively correlated with wind stress, with frequent reversals of residual flow for wind stress directed toward higher buoyancy. Only during calm weather conditions are longitudinal and lateral estuarine circulation highly correlated with the respective buoyancy gradients.
[1] A detailed comparison of results from a numerical three-dimensional hydrostatic lake model with high-resolution observations of the vertical structure of the turbulent bottom boundary layer (BBL) in a medium-size lake (Lake Alpnach, Switzerland) is provided. The focus of this study is on the shear-induced generation and destruction of stratification in the BBL that may ultimately lead to unstable layers (convection). The model was shown to provide a reliable description of the internal seiching dynamics, as well as the local BBL properties, including the generation of shear-induced convection in two data sets from 2003 and 2007. Basin-scale mixing parameters, inferred from the simulations, are closely connected to the seiching motions, with the hypolimnetic mixing reacting almost immediately to the variable wind-forcing and seiching activity. During upslope flow, the BBL becomes convectively turbulent, causing low mixing efficiency on a basin-scale, whereas during downslope flow, the BBL is restratifying and shear-induced turbulence is weak but leads to a higher mixing efficiency. The overall deep-water mixing efficiency varied in the range of 5 to 10% in this system dominated by turbulent boundary processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.