Insufficient oral bioavailability is considered as a key limitation for the widespread development of peptides as therapeutics. While the oral bioavailability of small organic compounds is often estimated from simple rules, similar rules do not apply to peptides, and even the high oral bioavailability that is described for a small number of peptides is not well understood. Here we present two highly Caco-2 permeable template structures based on a library of 54 cyclo(-d-Ala-Ala5-) peptides with different N-methylation patterns. The first (all-trans) template structure possesses two β-turns of type II along Ala6-d-Ala1 and Ala3-Ala4 and is only found for one peptide with two N-methyl groups at d-Ala1 and Ala6 [( N Me(1,6)]. The second (single-cis) template possesses a characteristic cis peptide bond preceding Ala5, which results in type VI β-turn geometry along Ala4-Ala5. Although the second template structure is found in seven peptides carrying N-methyl groups on Ala5, high Caco-2 permeability is only found for a subgroup of two of them [ N Me(1,5) and N Me(1,2,4,5)], suggesting that N-methylation of d-Ala1 is a prerequisite for high permeability of the second template structure. The structural similarity of the second template structure with the orally bioavailable somatostatin analog cyclo(-Pro-Phe-NMe-d-Trp-NMe-Lys-Thr-NMe-Phe-), and the striking resemblance with both β-turns of the orally bioavailable peptide cyclosporine A, suggests that the introduction of bioactive sequences on the highly Caco-2 permeable templates may result in potent orally bioavailable drug candidates.
The inhibition of carbohydrate-protein interactions by tailored multivalent ligands is a powerful strategy for the treatment of many human diseases. Crucial for the success of this approach is an understanding of the molecular mechanisms as to how a binding enhancement of a multivalent ligand is achieved. We have synthesized a series of multivalent N-acetylglucosamine (GlcNAc) derivatives and studied their interaction with the plant lectin wheat germ agglutinin (WGA) by an enzyme-linked lectin assay (ELLA) and X-ray crystallography. The solution conformation of one ligand was determined by NMR spectroscopy. Employing a GlcNAc carbamate motif with alpha-configuration and by systematic variation of the spacer length, we were able to identify divalent ligands with unprecedented high WGA binding potency. The best divalent ligand has an IC(50) value of 9.8 microM (ELLA) corresponding to a relative potency of 2350 (1170 on a valency-corrected basis, i.e., per mol sugar contained) compared to free GlcNAc. X-ray crystallography of the complex of WGA and the second best, closely related divalent ligand explains this activity. Four divalent molecules simultaneously bind to WGA with each ligand bridging adjacent binding sites. This shows for the first time that all eight sugar binding sites of the WGA dimer are simultaneously functional. We also report a tetravalent neoglycopeptide with an IC(50) value of 0.9 microM being 25,500 times higher than that of GlcNAc (6400 times per contained sugar) and the X-ray structure analysis of its complex with glutaraldehyde-cross-linked WGA. Comparison of the crystal structure and the solution NMR structure of the neoglycopeptide as well as results from the ELLA suggest that the conformation of the glycopeptide in solution is already preorganized in a way supporting multivalent binding to the protein. Our findings show that bridging adjacent protein binding sites by multivalent ligands is a valid strategy to find high-affinity protein ligands and that even subtle changes of the linker structure can have a significant impact on the binding affinity.
Specialized lipid domains (rafts) that are generally enriched in sterols and sphingolipids, are most likely present in cell membranes of animals, plants and fungi. While cholesterol and ergosterol are predominant in vertebrates and fungi, plants possess complex sterol profiles, dominated by sitosterol and stigmasterol in Arabidopsis thaliana. Fully hydrated model membranes of composition approaching those found in rafts of mammals, fungi and plants were investigated by means of solid-state 2H-NMR, using deuterated dipalmitoylphosphatidylcholine (2H(62)-DPPC). The dynamics of such membranes was determined through measuring of membrane ordering or disordering properties. The presence of the liquid-ordered, lo, phase, which may be an indicator of rigid sterol-sphingolipid domains, was detected in all binary or ternary mixtures of all sterols investigated. Of great interest, the dynamics of ternary mixtures mimicking rafts in plants (phytosterol/glucosylcerebroside/DPPC), showed a lesser temperature sensitivity to thermal shocks, on comparing to systems mimicking rafts in mammals and fungi. This effect was particularly marked with sitosterol. The presence of an ethyl group branched on the alkyl chain of sitosterol and stigmasterol is proposed as reinforcing the membrane cohesion by additional attractive van der Waals interactions with the alkyl chains of sphingolipids and phospholipids. As a side result, the elevated resolution of NMR spectra in the presence of sitosterol also suggests domains of smaller size than with other sterols. Finally, the role of phytosterols in maintaining plant membranes in a state of dynamics less sensitive to temperature shocks is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.